
CSCI 275:
Programming Abstractions
Lecture 23: Streams (cont.)

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Reminder: Streams

Data structure that is going to allow us to write sequential code,

but have the structure evaluated incrementally

What do we need to do this?

1. A new data structure

2. An ability to control when terms are evaluated

Reminder: Better Evaluation in Built-in Racket

(delay exp) returns an object called a promise, without

evaluating exp

(force promise) evaluates the promised expression and

returns its value
• If the promise's exp has not been evaluated yet, it is evaluated and

cached; otherwise, the cached value is returned

• A promised expression is evaluated only once, no matter how many

times it is forced!

Promises in action!

> (define prime-lst (primes))

> prime-lst

'(2 . #<promise>)

> (force (cdr prime-lst))

'(3 . #<promise>)

> (force (cdr (force (cdr prime-lst))))

'(5 . #<promise>)

> prime-lst

'(2 . #<promise!(3 . #<promise!(5 . #<promise>)>)>)

This worked, but it was

a bit annoying if we

wanted to process the

whole list!

Available Stream Procedures
These are already built-in, so we don't need to write them!

(require racket/stream)

(stream exp ...) ; Works like (list exp ...)

(stream? v)

(stream-cons head tail)

(stream-first s)

(stream-rest s)

(stream-empty? s)

empty-stream

(stream-ref s idx)

And several others

Constructing an Infinite Length Stream

Write a procedure which
• returns a stream constructed via stream-cons

• where the tail of the stream is a recursive call to the procedure

Call the procedure with the initial argument

(define (integers-from n)

(stream-cons n (integers-from (add1 n))))

(define positive-integers (integers-from 0))

Constructing an infinite-length stream

Simplest infinite-length stream: A stream of all zeros

(define all-zeros

(stream-cons 0 all-zeros))

Note: we cannot do this with a list!

(define all-zeros-lst

(cons 0 all-zeros-lst))

Error: all-zeros-lst: undefined;

cannot reference an identifier before its definition

Fibonacci numbers as a stream

Recall the Fibonacci numbers are defined by

f0 = 0, f1 = 1 and fn = fn-1 + fn-2

(define (next-fib m n)

(stream-cons m (next-fib n (+ m n))))

(define fibs (next-fib 0 1))

Building streams from streams

How to write a procedure that adds two streams together
• Use stream-cons to construct the new stream

• Use stream-first on each stream to get the heads

• Recurse on the tails via stream-rest

(define (stream-add s t)

(cond [(stream-empty? s) empty-stream]

[(stream-empty? t) empty-stream]

[else

(stream-cons (+ (stream-first s)

(stream-first t))

(stream-add (stream-rest s)

(stream-rest t)))]))

A helpful procedure for testing

We want to be able to look at the first n elements of a stream to be able to test

whether it worked or not.
We don’t want to have to write (stream-rest (stream-rest …)))

stream-take lets us see the first n elements of a stream

(stream->list (stream-take fibs 10))

gives

‘(0 1 1 2 3 5 8 13 21 34)

Let's (all) write some Racket!

Open up a new file in DrRacket

Make sure the top of the file contains
#lang racket

(require racket/stream)

Available Stream Procedures
These are already built-in, so we don't need to write them!

(require racket/stream)

(stream exp ...) ; Works like (list exp ...)

(stream? v)

(stream-cons head tail)

(stream-first s)

(stream-rest s)

(stream-empty? s)

empty-stream

(stream-ref s idx)

And several others

Write some infinite-length streams
(constant-stream x)

Returns a stream containing an infinite number of x
(stream->list (stream-take (constant-stream 'ha) 10))

=> '(ha ha ha ha ha ha ha ha ha ha)

(stream-cycle s)

Returns an infinite-length stream consisting of the elements of s repeating in

order.

(stream->list (stream-take

(stream-cycle (stream ‘A ‘B ‘C)) 10))

=> '(A B C A B C A B C A)

Stream Procedures

Implement (stream-filter f s) which returns a stream

containing the elements of s (in order) such that applying f to

the element returns anything other than #f

Hint: Think about how you’d implement the filter function for lists

using basic recursion with empty?, empty, cons, first, and rest

Bonus: You can prevent your implementation from evaluating f

on elements of the stream at the time you call stream-filter by

wrapping your implementation in a call to stream-lazy

Write some more stream procedures

(stream-double s)

Returns a stream containing each element of s twice
(stream-double (stream 1 2 3)) =>

(stream 1 1 2 2 3 3)

(stream-interleave s t)

Returns a stream that interleaves elements of s and t
(stream-interleave (stream 1 2 3) '(a b c d))

=> (stream 1 'a 2 'b 3 'c 'd)

	Slide 1: CSCI 275: Programming Abstractions
	Slide 5: Reminder: Streams
	Slide 6: Reminder: Better Evaluation in Built-in Racket
	Slide 7: Promises in action!
	Slide 8: Available Stream Procedures
	Slide 9: Constructing an Infinite Length Stream
	Slide 10: Constructing an infinite-length stream
	Slide 12: Fibonacci numbers as a stream
	Slide 13: Building streams from streams
	Slide 14: A helpful procedure for testing
	Slide 15: Let's (all) write some Racket!
	Slide 16: Available Stream Procedures
	Slide 17: Write some infinite-length streams
	Slide 18: Stream Procedures
	Slide 19: Write some more stream procedures

