CSCI 275:
Programming Abstractions

Lecture 23: Streams (cont.)
Fall 2024

Stephen Checkoway
Slides from Molly Q Feldman

Reminder: Streams

Data structure that is going to allow us to write sequential code,
but have the structure evaluated incrementally

What do we need to do this?
1. A new data structure
2. An ability to control when terms are evaluated

Reminder: Better Evaluation in Bullt-in Racket

(delay exp) returns an object called a promise, without
evaluating exp

(

force promise) evaluates the promised expression and

returns Its value

* |f the promise's exp has not been evaluated yet, It iIs evaluated and

cached: otherwise, the cached value Is returned

* A promised expression Is evaluated only once, no matter how many

times it 1s forced!

Promises In action!

This worked, but It was
a bit annoying If we

> (dgflne prime—-lst (primes)) wanted 1o process the
> prime-lst whole list!

'(2 . #<promise>)

> (force (cdr prime-1lst))
'(3 . #<promise>)

> (force (cdr (force (cdr prime-1lst))))

'"(5 . #<promise>)

> prime-1st

'"(2 . #<promise! (3 . #<promise! (5 . #<promise>)>) >)

Avallable Stream Procedures
These are already bullt-in, so we don't need to write them!

(require racket/stream)

(stream exp ...) ; Works like (list exp
(stream? v)

(stream—-cons head tail)

(

(

(

stream-first s)

stream—-rest s)

stream—empty? S)
empty—-stream

ﬁ

(stream—-ref s 1dx)

And several others

Constructing an Infinite Length Stream

Write a procedure which
* returns a stream constructed via

* where the tail of the stream Is a recursive call to the procedure

Call the procedure with the initial argument

(define (1ntegers-from n)
(n (1ntegers-from (addl n))))

(define positive—-i1ntegers (1ntegers-from 0))

Constructing an infinite-length stream

Simplest infinite-length stream: A stream of all zeros

(de:

"1ne all—-zeros

(stream—-cons 0 all—-zeros))

Note: we cannot do this with a list!

(de

fine all-zeros—-1st

(cons 0O all—-zeros-1st))

Error: all—-zeros-1st: undefined;

cannot reference an i1denti:

"1nition

"Ore 1ts de:

fier Dbe:

Fibonaccl numbers as a stream

Recall the Fibonacci numbers are defined by

f.=0,f,=1landf =f ,+f

(define (next-fib m n)
(stream-cons m (next-fib n (+ m n))))

(define fibs (next-fib 0 1))

(|

Bullding streams from streams

How to write a procedure that adds two streams together
* Use to construct the new stream

* Use stream-first on each stream to get the heads
°* Recurse onthe tailsvia stream-rest

(define (stream—-add s t)

(cond [(stream—-empty? s) empty-stream.
(stream-empty? t) empty-stream.
else

((+ (stream—-first s)
(stream—-first t))
(stream—add (stream-rest s)
(stream-rest t)))]))

A helpful procedure for testing

We want to be able to look at the first n elements of a stream to be able to test
whether 1t worked or not.
We don't want to have to write (stream-rest (stream-rest ..)))

stream—-take lets us see the first n elements of a stream

(stream—->11st (stream—-take fibs 10))
gives

‘(O 1 1 2 3 5 8 13 21 34)

Let's (all) write some Racket!

Open up a new file iIn DrRacket

Make sure the top of the file contains
#lang racket

(require racket/stream)

Avallable Stream Procedures

These are already built-in, so we don't need to write them!

(require racket/stream)

(stream exp ...) ; Works like (list exp
(stream? v)

(stream—-cons head tazil)

(

(

(

stream-first s)

stream—-rest s)

stream—-empty? s)
empty—stream

ﬁ

(stream-ref s 1dx)

And several others

Write some infinite-length streams

Returns a stream containing an infinite number of X
(stream—->11st (stream—-take (constant—-stream 'ha) 10))

=> ' (ha ha ha ha ha ha ha ha ha ha)

Returns an infinite-length stream consisting of the elements of s repeating In
order.

(stream—->11st (stream—take
(stream—-cycle (stream ‘A ‘B ‘C)) 10))
= '"(A B CABUC CADBZC A)

Stream Procedures

Implement which returns a stream

containing the elements of s (in order) such that applying £ to
the element returns anything other than #f£

Hint: Think about how you'd implement the filter function for lists
using basic recursion with empty?, empty, cons, first, and rest

Bonus: You can prevent your iImplementation from evaluating f
on elements of the stream at the time you call stream-filter by
wrapping your implementation in a call to stream-lazy

Write some more stream procedures

Returns a stream containing each element of s twice
(stream—-double (stream 1 2 3)) =>

(stream 1 1 2 2 3 3)

Returns a stream that interleaves elements of s and t
(stream—-1nterleave (stream 1 2 3) '"(a b c d))

=> (stream 1 'a 2 'b 3 'c 'd)

	Slide 1: CSCI 275: Programming Abstractions
	Slide 5: Reminder: Streams
	Slide 6: Reminder: Better Evaluation in Built-in Racket
	Slide 7: Promises in action!
	Slide 8: Available Stream Procedures
	Slide 9: Constructing an Infinite Length Stream
	Slide 10: Constructing an infinite-length stream
	Slide 12: Fibonacci numbers as a stream
	Slide 13: Building streams from streams
	Slide 14: A helpful procedure for testing
	Slide 15: Let's (all) write some Racket!
	Slide 16: Available Stream Procedures
	Slide 17: Write some infinite-length streams
	Slide 18: Stream Procedures
	Slide 19: Write some more stream procedures

