
CSCI 275:
Programming Abstractions
Lecture 22: Streams

Fall 2024

Stephen Checkoway

Slides from Cynthia Taylor

A Step Back from MiniScheme

Homeworks 5, 6 and 8 are MiniScheme

Homework 5: Environments, A, B

Homework 6: C, D, E

Homework 8: F, G, H

Through let, which

we covered

Monday

Interlude Today & Friday:

Streams

(define (foo x)

(display x)

(display "\n")

(cons x '(10)))

(foo (list (+ 1 2) (+ 4 5)))

A.((+ 1 2) (+ 4 5))

B.(list (+ 1 2) (+ 4 5))

C.(3 9)

D. Something else
1

1

What value of x gets

displayed?

Note: helpful for MiniScheme debugging, display
different values in parse or eval-exp

Racket has eager evaluation

Remember how function calls are evaluated
(my-func (list x y (+ x y 32))

(if (> c 0) x y))

my-func is evaluated to a procedure

Then, the arguments are evaluated to values

Finally, the procedure’s body is evaluated with the parameters bound to

argument values

Creating an infinite list

Consider

(define (make-list start)

(cons (start (make-list (add1 start)))))

The intention is (make-list 0) makes the infinite list ‘(0 1 2 3 …)

Why doesn’t this work?

Lazy evaluation

What we want is lazy evaluation where expressions aren’t evaluated until

they’re needed

Haskell has this behavior by default (Haskell is so cool)

In Racket, we need a new approach

Control Evaluation: Promises

Some new Scheme special forms!

(delay exp) returns an object called a promise, without

evaluating exp

(force promise) evaluates the promised expression and

returns its value

One Set of Implementations

(define (delay exp)

(lambda ()

exp))

THIS DOESN’T QUITE WORK! WHY?

(define (force promise)

(promise))

“Thunk”ing

is delaying the evaluation

until later, here we wrap it

in a no-argument lambda

How to call a no-argument

lambda

Promises in Racket

We're going to use Racket's promises rather than our own

(require racket/promise) — Loads the library

(delay body ...+) — Returns a promise that when forced

for the first time evaluates the body expressions

When subsequently forced, it returns the original value forced

(force promise) — Force the promise

Let's build an infinite list of prime
numbers
First, we need to think about how we want to represent this

Let's use a cons cell where

• the car is a prime; and

• the cdr is a promise which will return the next cons cell

2 #<promise>

3 #<promise>

5 #<promise>

force

force

Given prime?, Let’s make a prime generator
next-prime checks if n is prime and if so, returns a cons cell containing n and

a promise to construct the next one; otherwise it recurses on n+2

(define (next-prime n)

(cond [(prime? n) (cons n

(delay (next-prime (+ n 2))))]

[else (next-prime (+ n 2))]))

primes returns a cons cell containing 2 and a promise to construct the next one

(define primes

(cons 2

(delay (next-prime 3))))

(define primes

(cons 2

(delay (next-prime 3))))

and let (define prime-lst (primes)).

What is (force (cdr prime-lst))?

A. ‘(3 #<promise>)

B. ‘(3 . #<promise>)

C. ‘(3 5 7 11 13 #<promise>)

D.Something else
2

1

Infinite list in action!

> (define prime-lst (primes))

> prime-lst

'(2 . #<promise>)

> (force (cdr prime-lst))

'(3 . #<promise>)

> (force (cdr (force (cdr prime-lst))))

'(5 . #<promise>)

> prime-lst

'(2 . #<promise!(3 . #<promise!(5 . #<promise>)>)>)

We need cdr here, not

rest, as a promise of a

list is not a list itself

Introducing streams

A stream is a (potentially infinite) data structure

It contains a promise to return the first element in the stream and a promise to

get the rest of the stream

We could build this out of Racket’s delay/force or…

Available Stream Procedures
These are already built-in, so we don't need to write them!

(require racket/stream)

(stream exp ...) ; Works like (list exp ...)

(stream? v)

(stream-cons head tail)

(stream-first s)

(stream-rest s)

(stream-empty? s)

empty-stream

(stream-ref s idx)

And several others

Constructing an Infinite Length Stream

Write a procedure which
• returns a stream constructed via stream-cons

• where the tail of the stream is a recursive call to the procedure

Call the procedure with the initial argument

(define (integers-from n)

(stream-cons n (integers-from (add1 n))))

(define positive-integers (integers-from 0))

Constructing an infinite-length stream

Simplest infinite-length stream: A stream of all zeros

(define all-zeros

(stream-cons 0 all-zeros))

Note: we cannot do this with a list!

(define all-zeros-lst

(cons 0 all-zeros-lst))

Error: all-zeros-lst: undefined;

cannot reference an identifier before its definition

Why does
(define all-zeros

(stream-cons 0 all-zeros))

work when the list-version does not?

A. Streams are magic

B. Streams are lazy so the stream-cons doesn't run until all-zeros is

accessed for the first time

C. Streams are lazy so although the stream is constructed by stream-

cons, its "first" and "rest" part aren't evaluated until forced by stream-

first and stream-rest

D. Racket treats streams specially so it knows this construction is okay
2

7

Fibonacci numbers as a stream

Recall the Fibonacci numbers are defined by

f0 = 0, f1 = 1 and fn = fn-1 + fn-2

(define (next-fib m n)

(stream-cons m (next-fib n (+ m n))))

(define fibs (next-fib 0 1))

Let's write some Racket!

Open up a new file in DrRacket

Make sure the top of the file contains
#lang racket

(require racket/stream)

A helpful procedure for testing

We want to be able to look at the first n elements of a stream to be able to test

whether it worked or not.

We don’t want to have to write (stream-rest (stream-rest …)))

stream-take lets us see the first n elements of a stream

(stream->list (stream-take fibs 10))

gives

‘(0 1 1 2 3 5 8 13 21 34)

Building streams from streams

How to write a procedure that adds two streams together
• Use stream-cons to construct the new stream

• Use stream-first on each stream to get the heads

• Recurse on the tails via stream-rest

(define (stream-add s t)

(cond [(stream-empty? s) empty-stream]

[(stream-empty? t) empty-stream]

[else

(stream-cons (+ (stream-first s)

(stream-first t))

(stream-add (stream-rest s)

(stream-rest t)))]))

Write some infinite-length streams
(require racket/stream)

(constant-stream x)

Returns a stream containing an infinite number of x
(stream->list (stream-take (constant-stream 'ha) 10))

=> '(ha ha ha ha ha ha ha ha ha ha)

(stream-cycle s)

Returns an infinite-length stream consisting of the elements of stream s
repeating in order.

(stream->list (stream-take

(stream-cycle (stream ‘A ‘B ‘C)) 10))

=> '(A B C A B C A B C A)

Available Stream Procedures
These are already built-in, so we don't need to write them!

(require racket/stream)

(stream exp ...) ; Works like (list exp ...)

(stream? v)

(stream-cons head tail)

(stream-first s)

(stream-rest s)

(stream-empty? s)

empty-stream

(stream-ref s idx)

And several others

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: A Step Back from MiniScheme
	Slide 11: (define (foo x) (display x) (display "\n") (cons x '(10))) (foo (list (+ 1 2) (+ 4 5)))
	Slide 12: Racket has eager evaluation
	Slide 13: Creating an infinite list
	Slide 14: Lazy evaluation
	Slide 15: Control Evaluation: Promises
	Slide 16: One Set of Implementations
	Slide 18: Promises in Racket
	Slide 19: Let's build an infinite list of prime numbers
	Slide 20: Given prime?, Let’s make a prime generator
	Slide 21: (define primes (cons 2 (delay (next-prime 3)))) and let (define prime-lst (primes)). What is (force (cdr prime-lst))?
	Slide 22: Infinite list in action!
	Slide 23: Introducing streams
	Slide 24: Available Stream Procedures
	Slide 25: Constructing an Infinite Length Stream
	Slide 26: Constructing an infinite-length stream
	Slide 27: Why does (define all-zeros (stream-cons 0 all-zeros)) work when the list-version does not?
	Slide 28: Fibonacci numbers as a stream
	Slide 29: Let's write some Racket!
	Slide 30: A helpful procedure for testing
	Slide 31: Building streams from streams
	Slide 32: Write some infinite-length streams
	Slide 33: Available Stream Procedures

