
CSCI 275:
Programming Abstractions
Lecture 17: MiniScheme A, B & Environments

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Questions? Concerns?

2

• The break counts as a weekend for any extension

requests

• Start thinking about MiniScheme project teams!

• Three homeworks with the same team

Reminder: MiniScheme Project
You’re going to build an interpreter for a subset of Scheme

(called MiniScheme)

What does an interpreter do? Executes a program

We need a way to specify the language of a valid program

We need to determine if a given program is valid (a tree!)

We need to evaluate a given program

Grammar

Parser

Evaluator

Literals & Symbols

Numbers first

EXP → number parse into lit-exp

We're going to need a data type to represent literal expression

(and the only type of literals we have are numbers)

We're going to want something which gives
(lit-exp num) ; constructor

(lit-exp? exp) ; recognizer

(lit-exp-num exp) ; accessor

Parsing Numbers

(define (parse input)

(cond [(number? input) (lit-exp input)]

[else

(error 'parse "Invalid syntax ~s" input)]))

MiniScheme: You don't need to implement it exactly the way I do in

class, feel free to code how you’d like but you do need to use the

name parse

We are implementing MiniScheme using Racket. The code about is Racket!

Think about how Python is implemented in C.

Throwing errors is

important in

MiniScheme!

What does (parse 15) return, assuming the

implementation we've discussed so far?

A.15

B.(number 15)

C.(lit-exp 15)

D.(lit-exp "15")

E. It's an error of some sort

7

Why is (lit-exp 15) what we want? In other

words, why is there a data type for a number in our

parser?

A. We just like to complicate things in this class

B. We parse everything into a tree, so we need a node to “hold”
numbers/etc.

C. This relates to the grammar we talked about previously

D. More than one of the above

E. No idea

8

Evaluating literals

(define (eval-exp tree e)

(cond [(lit-exp? tree) (lit-exp-num tree)]

[else

(error 'eval-exp "Invalid tree: ~s"

tree)]))

A starting interpreter:

What does (eval-exp 15 empty-env) return,

assuming the implementation we've discussed so far)?

A.15

B.(value 15)

C.(lit-exp 15)

D. It's an error of some sort
(define (eval-exp tree e)

(cond [(lit-exp? tree)

(lit-exp-num tree)]

[else

(error 'eval-exp

"Invalid tree: ~s" tree)]))

What does (eval-exp (lit-exp 15) empty-env)

return, assuming the implementation we've discussed

so far?

A.15

B.(value 15)

C.(lit-exp 15)

D. It's an error of some sort

(define (eval-exp tree e)

(cond [(lit-exp? tree)

(lit-exp-num tree)]

[else

(error 'eval-exp

"Invalid tree: ~s" tree)]))

Putting them together again

> (parse 107)

(lit-exp 107)

> (lit-exp 107)

(lit-exp 107)

> (eval-exp (lit-exp 107) empty-env)

107

> (eval-exp (parse 107) empty-env)

107

Recall: How to implement MiniScheme

For each new type of expression:

• Add a new data type
• ite-exp
• let-exp
• etc.

• Modify parse to produce those

• Modify eval-exp to interpret them

EXP → number

| symbol
| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP

)

| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP EXP*)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

Remember: writing in

Racket, implementing

MiniScheme

Let's add some symbols (‘a, ‘+, etc.) !

Grammar
EXP → number parse into lit-exp

| symbol parse into var-exp

Data type for a variable reference expression might have:

(var-exp symbol) ;constructor

(var-exp? exp) ;recognizer

(var-exp-symbol exp) ;accessor

Remember that numbers parse to lit-exp expressions.

What do we want (parse ‘x) to return?

A.10

B.(lit-exp 10)

C.(lit-exp ‘x)

D.(var-exp 10)

E.(var-exp ‘x)

15

Let’s say we want to run
(eval-exp (parse ‘x) ...).

What makes this different than evaluating a

number?

How do we know what x means?

We bind things frequently in Racket: we make calls to let,

we bind parameters of lambdas, etc.

Big Idea: to be able to find what a variable is bound

to, we need a map from variables to their bound

values. This is called an environment!

We’ve discussed this a bit before!

Recall that when Racket evaluates a variable, the result is the

value that the variable is bound to

If we have (define x 10), then evaluating x gives us the value

10

If we have (define (foo x) (- x y)), then evaluating foo

gives us the procedure (lambda (x) (- x y)), along with a

way to get the value of y (which is hopefully defined!)

Racket needs a way to look up values that correspond to

variables: an environment

Your Task: Build an Environment!

You will build an environment (HW5) and there are rules

for Racket about how variable binding works
• You have been mentally developing such mappings already as you

trace through program evaluation!

(let ([x 2]

[y 3])

(let ([x 4])

(+ x y)))

x

y

2

3

Environments: Examples

x 4

When we execute the following, what is the result?

(let ([x 2] [y 3])

(let ([f (lambda (x) (+ x y))])

(f 5))

A. 8

B. 7

C. 5

D. Something else

2

1

Environment Operations

Two basic operations on environments, both of which you’ll

implement in MiniScheme:

1. Look something up
• What is the binding of x right now?

1. Add something to the environment

• Specifically, we’ll do this by extending a previously known

environment

(1) Look Up in Environments

We need to look up the value bound to a symbol:

(let ([x 3])

(let ([x 4])

(+ x 5)))

should return 9 since the innermost binding of x is 4.

We say the inner x shadows the outer x – we need to

account for this!

(2) Create New Environments

Create new environments by extending

existing ones.

(let ([x 3])

(+ (let ([x 10])

(* 2 x))

x))

=> 23

• If E0 is the top-level environment, then the first let extends E0 with a

binding of x to 3

• If E1 is the new environment, we write E1 = E0[x ↦ 3]

• The second let creates a new environment E2 = E1[x ↦ 10]

• The (* 2 x) is evaluated using E2

• The final x is evaluated using E1

Let E0 be an environment with x bound to 10 and y bound to

23.

Let E1 = E0[x ↦ 8, z ↦ 0]

What is the result of looking up x in E0 and E1?

A.E0: 10

E1: 10

B.E0: 8

E1: 8

25

E0: 10

E1: 8

E0: 8

E1: 10

E1 can't exist because z isn't bound in

E0

C.

D.

E.

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ↦ 8, z ↦ 0]

What is the result of looking up y in E0 and E1?

A.E0: 23

E1: 23

B.E0: 23

E1: error: y isn't bound in E1

C. It's an error in both because since y isn't bound in E1, it's

not bound in E0 any longer

D. None of the above
2

6

Let E0 be an environment with x bound to 10 and y bound to 23.

Let E1 = E0[x ↦ 8, z ↦ 0]

What is the result of looking up z in E0 and E1?

A.E0: 0

E1: 0

B.E0: error: z isn't bound in E0

E1: 0

C.None of the above

2

7

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Concerns?
	Slide 3: Reminder: MiniScheme Project
	Slide 4: Literals & Symbols
	Slide 5: Numbers first
	Slide 6: Parsing Numbers
	Slide 7: What does (parse 15) return, assuming the implementation we've discussed so far?
	Slide 8: Why is (lit-exp 15) what we want? In other words, why is there a data type for a number in our parser?
	Slide 9: Evaluating literals
	Slide 10: What does (eval-exp 15 empty-env) return, assuming the implementation we've discussed so far)?
	Slide 11: What does (eval-exp (lit-exp 15) empty-env) return, assuming the implementation we've discussed so far?
	Slide 12: Putting them together again
	Slide 13: Recall: How to implement MiniScheme
	Slide 14: Let's add some symbols (‘a, ‘+, etc.) !
	Slide 15: Remember that numbers parse to lit-exp expressions. What do we want (parse ‘x) to return?
	Slide 16: Let’s say we want to run (eval-exp (parse ‘x) ...). What makes this different than evaluating a number?
	Slide 17: How do we know what x means?
	Slide 18: We’ve discussed this a bit before!
	Slide 19: Your Task: Build an Environment!
	Slide 20: Environments: Examples
	Slide 21: When we execute the following, what is the result? (let ([x 2] [y 3]) (let ([f (lambda (x) (+ x y))]) (f 5))
	Slide 22: Environment Operations
	Slide 23: (1) Look Up in Environments
	Slide 24: (2) Create New Environments
	Slide 25: Let E0 be an environment with x bound to 10 and y bound to 23. Let E1 = E0[x ↦ 8, z ↦ 0] What is the result of looking up x in E0 and E1?
	Slide 26: Let E0 be an environment with x bound to 10 and y bound to 23. Let E1 = E0[x ↦ 8, z ↦ 0] What is the result of looking up y in E0 and E1?
	Slide 27: Let E0 be an environment with x bound to 10 and y bound to 23. Let E1 = E0[x ↦ 8, z ↦ 0] What is the result of looking up z in E0 and E1?

