
CSCI 275:
Programming Abstractions
Lecture 16: MiniScheme Start

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Functional Language of the Week: Kotlin

3

• Started by JetBrains

• Industry problem, industry solution

• JetBrains makes lots of SE tools (e.g. IntelliJ, PyCharm IDEs)

• 28th on the top 50 languages list

• Open Source, funded by JetBrains, Google, etc.

Main use case? Android programming!

• Since 2019, preferred Android development language

https://developer.android.com/kotlin

https://developer.android.com/kotlin

Interplay between “research features” and language design? Read more: https://blog.sigplan.org/2022/05/19/language-design-in-the-real-

world/

https://play.kotlinlang.org/byExample/04_functional/02_Lambdas

Showcases type inference (i.e.

inferring types in a language that

is statically typed)

Functional Language of the Week: Kotlin

https://blog.sigplan.org/2022/05/19/language-design-in-the-real-world/
https://blog.sigplan.org/2022/05/19/language-design-in-the-real-world/
https://play.kotlinlang.org/byExample/04_functional/02_Lambdas

MiniScheme

MiniScheme Project
You’re going to build an interpreter for a subset of Scheme

(called MiniScheme)

What does an interpreter do? Executes a program

We need a way to specify the language of a valid program

We need to determine if a given program is valid

We need to evaluate a given program

Grammar

Parser

Evaluator

Interpreters You’ve Encountered

• Python interpreter

• DrRacket interpreter

Why does this matter?

Languages are written by people.

You can write languages.

You have the power to make interesting

decisions.

Why does this matter?

Languages are written by people.

You can write languages.

You have the power to make interesting

decisions.

Here are some examples.

https://www.youtube.com/watch?v=sH4XF6pKKmk

and the Bernhardt talk mentioned

https://www.youtube.com/watch?v=sH4XF6pKKmk

DrRacket Interpreter

The DrRacket Interpreter is a REPL

Read Eval Print Loop

Read in the characters that

the user types. Parse them

into terms that make sense

to Racket

Evaluate the parsed terms

into their final expressions.

(+ 1 2) becomes 3.

Show them to the user!

So what are you going to do?

You’re going to build an interpreter for MiniScheme!

The project has two primary functions:

(parse exp) creates a tree structure that represents the

expression exp

(eval-exp tree environment) evaluates the given

expression tree within the given environment and returns its

value

MiniScheme Project
You’re going to build an interpreter for a subset of Scheme

(called MiniScheme)

What does an interpreter do? Executes a program

We need a way to specify the language of a valid program

We need to determine if a given program is valid

We need to evaluate a given program

Grammar

Parser

Evaluator

How do we understand what a program is?

13

Yes, this feels

philosophical. But think

about it concretely.

e.g.

Why do we say

(if (< 2 3) 3 4)

is a program, but

< 2 (if 3) (4 3)

and å®çéπ¬

are not?

Things we need to understand programs

• Set of symbols

• Rules for combining the symbols

With those ideas, certain symbols can elicit certain

meanings

PEOPLE make these rules!

The fact (< 2 3) is a valid

program in Racket, but not in

Python, comes from this idea

Grammars: Set of Symbols & Rules

A grammar for a language is a (mathematical) tool for specifying

which words over an alphabet belong to the language

Grammars are often used to determine the meaning of words in

the language

Grammars are very old!

• Dating back to at least the Indian linguist Yāska (7th–5th century

BCE)

• One of many ways Programming Languages borrows from Natural

Language

Grammars, slightly more formally
A grammar is a set of rules that describe how to generate a string

Grammars have three basic components

• A set of variables or nonterminals which expand into strings

• A set of terminal symbols from which the final word is to be

constructed

• A set of production rules which describe how a nonterminal can be

expanded

Example: Variables = {S, A}; terminals = {x, z}

S → xSx

S → A
A → zA

A → z

You will (or have!) spent a lot of

time with grammars in CSCI 383:

Theory of Computation

Why do we care in this class?

We're going to specify a grammar for MiniScheme

We'll use this to:

• Communicate what needs to be implemented in each

part of the project

• Make sure we know what a valid program does (or does

not) look like

MiniScheme’s Full Grammar
EXP → number

| symbol
| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP)

| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP+)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

* Means 0 or more

times

+ means 1 or more

Can
(if (if 0 1 2)

(if 3 4 5)

(if x y z))

be generated by the

grammar for MiniScheme?
A. Yes

B. No. (if …) cannot appear as
the first expression of another
if

C. No. (if …) cannot appear as
the "then" or "else" expressions
in another if

D. No. x, y, and z aren't defined
19

EXP → number

| symbol
| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP

)

| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP+)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

Are we done? No!

Challenge: Syntactically valid but semantically
invalid

Consider the invalid Scheme program
(let ([x 5]

[y 32])

(+ z 2))

This is syntactically valid - i.e., it's a valid string generated by the

MiniScheme grammar but semantically meaningless.

Stay tuned about how we fix this!

Shape of the Task & The Content

• We will be working on MiniScheme one part at a time

• We’ll implement the language incrementally, building the

grammar as we go

Now let’s do it!

By the end of next week, we’ll be able
to do (+ 1 2) evaluates to 3

In Python, how do we know what 1 * 2 + 3

means?

A. We look up the term “1 * 2 + 3” in a dictionary

B. Python finds + as the addition operator, * as the multiplication
operator, and applies them

C. B and we have order of operation rules

D. Something else in addition to C

E. None of the above

We parse terms before we evaluate them

• It is so much easier to be able to have one format
to distinguish 1 * 2 + 3 from 1 * (2 + 3)

• It is great to have a format that is consistent across

the whole language

Parsing creates a tree structure for language syntax

called an abstract syntax tree

MiniScheme programs are straightforward to
parse!

Consider the program
(let ([x 10]

[y 20])

(+ x y))

This is just a structured list containing the symbols let, f, x, y,

and + and the numbers 10 and 20

Everything is prefix

notation & everything is

a structured list!

Start simple: only numbers

Start simple: only numbers

EXP → number parse into lit-exp

We're going to need a data type to represent literal expression

(and the only type of literals we have are numbers)

We're going to want something which gives
(lit-exp num) ; constructor

(lit-exp? exp) ; recognizer

(lit-exp-num exp) ; accessor

Putting them together

> (parse 107)

(lit-exp 107)

> (lit-exp 107)

(lit-exp 107)

> (eval-exp (lit-exp 107) empty-env)

107

> (eval-exp (parse 107) empty-env)

107

Practically, how to implement MiniScheme

For each new type of expression:

• Add a new data type
• ite-exp
• let-exp
• etc.

• Modify parse to produce those

• Modify eval-exp to interpret them

EXP → number

| symbol
| (if EXP EXP EXP)

| (let (LET-BINDINGS) EXP)

| (letrec (LET-BINDINGS) EXP

)

| (lambda (PARAMS) EXP)

| (set! symbol EXP)

| (begin EXP*)

| (EXP EXP*)

LET-BINDINGS → LET-BINDING*

LET-BINDING → [symbol EXP]

PARAMS → symbol*

	Slide 1: CSCI 275: Programming Abstractions
	Slide 3: Functional Language of the Week: Kotlin
	Slide 4: Functional Language of the Week: Kotlin
	Slide 5: MiniScheme
	Slide 6: MiniScheme Project
	Slide 7: Interpreters You’ve Encountered
	Slide 8: Why does this matter?
	Slide 9: Why does this matter?
	Slide 10: DrRacket Interpreter
	Slide 11: So what are you going to do?
	Slide 12: MiniScheme Project
	Slide 13: How do we understand what a program is?
	Slide 14: Things we need to understand programs
	Slide 15: Grammars: Set of Symbols & Rules
	Slide 16: Grammars, slightly more formally
	Slide 17: Why do we care in this class?
	Slide 18: MiniScheme’s Full Grammar
	Slide 19: Can (if (if 0 1 2) (if 3 4 5) (if x y z)) be generated by the grammar for MiniScheme?
	Slide 20: Are we done? No! Challenge: Syntactically valid but semantically invalid
	Slide 21: Shape of the Task & The Content
	Slide 22: In Python, how do we know what 1 * 2 + 3 means?
	Slide 23: We parse terms before we evaluate them
	Slide 25: MiniScheme programs are straightforward to parse!
	Slide 26: Start simple: only numbers
	Slide 27: Start simple: only numbers
	Slide 28: Putting them together
	Slide 29: Practically, how to implement MiniScheme

