CSCI 275:
Programming Abstractions

Lecture 14: Types & Computation
Fall 2024

Stephen Checkoway 2 s
Slides from Molly Q Feldman

Questions? Concerns?

Functional Language of the Week: Haskell

« Haskell was first released I1n 1990, started in 1987

* Language developed “by committee”
“The committee's primary goal was to design a language that satisfied
these constraints:
1. It should be suitable for teaching, research, and applications,
iIncluding building large systems.
2. It should be completely described via the publication of a formal
syntax and semantics.
. It should be freely available. Anyone should be permitted to
Implement the language and distribute it to whomever they please.
. It should be based on ideas that enjoy a wide consensus.
. 1t should reduce unnecessary diversity in functional programming
languages.”

ook W

https://www.haskell.org/onlinereport/preface-jfp.html

https://www.haskell.org/onlinereport/preface-jfp.html

Functional Language of the Week: Haskell

* Seen as atest bed for a lot of advanced PL features
* The GHC (Glasgow Haskell Compiler) specifically has made
a lot of Innovations In compilers

* |ts logo is a lambda! Described as a "an advanced, purely
functional programming language”

« Haskell operates with a lazy semantics (sometimes referred to
as call-by-need semantics) — this Is different than what Racket

and most languages use, stay tuned!
N
)X‘

Functional Language of the Week: Haskell

factorial :: (Integ ral a) => a => a Implementations from https://en.wikipedia.org/wiki/Haskell

—— Using recursion (with the "ifthenelse" expression)
factorial n = 1f n < 2

then 1

else n x factorial (n - 1)

—— Using recursion (with pattern matching)
factorial 0 = 1
factorial n = n % factorial (n - 1)

—— Using a list and the "product" function
factorial n = product [1..n]

—— Using fold (implements "“product")
factorial n = foldl (x) 1 [1..n]

If you're interested, Simon Peyton Jones (main lead of the Haskell compiler) hour long talk on Haskell history:
https://www.youtube.com/watch?v=re96UgMk6GQ

https://www.youtube.com/watch?v=re96UgMk6GQ
https://en.wikipedia.org/wiki/Haskell

Types Continued

Which of the calls below will fail the tvpe checker?

(: bsum (= (Listof Number) Number))
(define (bsum 1st)
(cond [(empty? 1lst) 0]
[else (+ (first 1st) (bsum (rest 1st)))]))

(: csum (= (Listof Integer) Integer))
(define (csum lst)
(foldr + 0 1st))

(bsum
(bsum
(csum
(csum

E. None of the above

(: bsum (= (Listof Number) Number))
(define (bsum 1st)
(cond [(empty? lst) 0]

Type Ch eCkl ng In RaC ke'l [else (+ (first lst) (bsum (rest 1st)))]))

(: csum (—> (Listof Integer) Integer))

Welcome to DrRacket, version 8.5 [cs]. (define (csum 1lst)
Language: typed/racket with debugging; memory limit: 128 MB. (foldr + 0 1lst))

Type Checker: type mismatch (bsum (list 1 2 3 4)) :A
expected: Integer (bsum (list 1.1 2.2 3.3 4.4)) ;B
given: Positive-Float-No-NaN 1in: 1.1 (csum (list 1 2 3 4)) ;C

(csum (list 1.1 2.2 3.3 4.4)) ;D

@ Type Checker: type mismatch
expected: Integer
given: Positive-Float-No-NaN in: 2.2

Notice even though D throws
the error, we do not get any

@ Type Checker: type mismatch
expected: Integer |
given: Positive-Float-No-NaN in: 3.3 output from the previous three

@ Type Checker: type mismatch calls
expected: Integer
given: Positive-Float-No-NaN 1in: 4.4

R | Typed Racket includes a
Type Checker: Summary: 4 errors encountered 1n: .
1.1 Type Checking Pass before

.2 evaluation!

=~ W N
=~ WN

Typed Racket

Basic types like Number

Function types like (:

Type constructors like (Lis

Union types like (U

F'alse

nega

ce (—> Integer
cof Boolean)
(Listof Number))

ceger))

Creating your own types

Writing out type annotations Is something we do a lot

AND

We probably want to be able to make new types for new data, etc

(define-type N3N (-> Number Number Number))

-_la-\ —

(define-type FalseNum (U False (Listof Number))

Reminder: Tree definition

. Definition of tree datatype
(struct tree (value children) :transparent)

. An empty tree Is represented by null
(define empty—-tree null)

. (empty-tree? empty-tree) returns #t
(define empty-—-tree? null?)

, Convenience constructor
, (make-tree v cl c2 ... cn) Is equivalent to

, (tree v (listcl c2 ... cn))
(define (make-tree wvalue

(Cree value children))

children)

Reminder: variadic function!

How do we create a typed Number tree?

Reminder, the untyped version:

(struct tree (value children) #:

A. (struct tree ([value: Number]

[children: (Listof tree)]))

B. (struct tree (|[value: Number]

transparen-

children: (Listof Number)]))

C. (struct tree (|[value: Number]

D. (struct tree ([value children]

E. Something else

[children: Number]))

Number))

Reminder of our leaf checker below. What type Is it?

(define (leaf? t)
(cond [(empty—-tree? t) #£f]
else (empty? (tree-children -

£f? (—-> tree tree))

Roolean tree))

(-=> LTree Boolean))

_ree False))

E. Something else

Types for Variadic Functions

Specifies the type of the

remaining arguments

(: make-tree (—>x% (Number) #:rest tree tree))
(define (make-tree value . children)
(tree value children))

Reminder: variadic
function!

Now we can enforce numeric trees!

(define T1l (make-tree 50))
(define T2 (make-tree 22))
(define T3 (make-tree 10))
(define T6 (make-tree 73 T1 T2 T3))

(define T4 (make-tree 'a)) X

Welcome to DrRacket, version 8.5 [cs].
Language: typed/racket, with debugging; memory limit: 128 MB.

Type Checker: type mismatch
expected: Number
given: 'a in: (quote a)
>

Recursive Types

Struct typing Is a special case of Recursive Types

We can define the tree type by saying that the children Is
of type “list of trees”

However, we cannot do something like

(define-type forest (U Number forest))

Type defined completely

by 1ts own definition

Types, Leveled Up

Assume we write 2 variants of the member procedure: one for
Numbers, one for Strings. They have the type sighatures:
(: nmem

P

(—=> Number (Listof Number)
(U False (Listof Number))
(

)

P

)
-> String (Listof String)
(U False (Listof String)))
hich of the following Is true?

(: smem

)

A.nmem and smem probably use the type of the arguments in their

Implementations
B.nmem and smem probably do not use the type of the arguments In

their iImplementations
C.nmem and smem's type signatures have the same general structure

D. More than one of the above
E. None of the above

We want a type signature for a general
member!

(: nmem (—> Number (Listof Number)
(U False (Listof Number))))

(: smem (-> String (Listof String)
())

U False (Listof String)

(: mem (-> X (Listof X)
(U False (Listof X))))

Polymorph — "Many forms”

Parametric Polymorphis

Typed Racket (and many functional languages!) support
parametric polymorphism

This allows us to write code without knowing the actual type of
the arguments

Parametric Polymorphism in Typed Racket

Typed Racket introduces the A11 type constructor

Al1l takes a list of type variables and a body type — the type
variable can be free in the body of the type

So for a general length method, we would get the type

(: length (All (A) (-> (Listof A) Integer)))

If this Is the polymorphic type for 1ength:

(: length (A1l (A) (-> (Listof A) Integer)))

what Is It for our generic mem member procedure?

A. (: mem (-> A (Listof A)
(U False (Listof A))))

B. (: mem (—> Number (Listof
(U False (Listof

C. (: mem (Al.

(U Fa.

D. Something else

(A) (=> A
se (Listof

Always good to use an adjective

Other Types of Polymorphism solymorphiam for (s reasont
You likely have encountered other kinds of polymorphism!

Subtype Polymorphism: if you define a procedure for a

Number, you can use It for a Float or an Integer as well
("subsumption rule™)

Ad-hoc Polymorphism: you can use the + operator on Strings
and on Integers. You can also overload + for your own class!

(this looks like polymorphism, but iIs many implementations)

Fun Facts

Java Generics are an implementation of parametric
polymorphism using wildcards

This Is a new feature In Java, relatively speaking: it was only
added In 2004 and Is based on decades of research by the PL
community on generics In Java

Taming Wildcards in Java’s Type System *

Ross Tate Alan Leung
University of California, San Diego University of California, San Diego
rtate@cs.ucsd.edu aleung@cs.ucsd.edu

Abstract

Wildcards have become an important part of Java’s type system
since their introduction 7 years ago. Yet there are still many open
problems with Java’s wildcards. For example, there are no known
sound and complete algorithms for subtyping (and consequently
type checking) Java wildcards, and in fact subtyping is suspected
to be undecidable because wildcards are a form of bounded exis-
tential types. Furthermore, some Java types with wildcards have no
joins, making inference of type arguments for generic methods par-
ticularly difficult. Although there has been progress on these fronts,
we have 1dentified significant shortcomings of the current state of
the art, along with new problems that have not been addressed.

In this paper, we illustrate how these shortcomings reflect the
subtle complexity of the problem domain, and then present major
improvements to the current algorithms for wildcards by making
slight restrictions on the usage of wildcards. Our survey of existing
Java programs suggests that realistic code should already satisty
our restrictions without any modifications. We present a simple al-
gorithm for subtyping which is both sound and complete with our
restrictions, an algorithm for lazily joining types with wildcards
which addresses some of the shortcomings of prior work, and tech-
niques for improving the Java type system as a whole. Lastly, we
describe various extensions to wildcards that would be compatible
with our aleorithms.

Sorin Lerner

University of California, San Diego
lerner@cs.ucsd.edu

https://rosstate.org/publications/tamewild/tamewild-tate-pldill.pdf

https://rosstate.org/publications/tamewild/tamewild-tate-pldi11.pdf

Fun Facts

Java Generics are an implementation of parametric
polymorphism using wildcards

This Is a new feature In Java, relatively speaking: it was only
added In 2004 and Is based on decades of research by the PL
community on generics In Java

The classic model for parametric polymorphism Is called System
F (this was developed in the 1970s)

Type-Related Algorithms

» Types give us additional functionality and the abllity to do
better error detection

* We would need some additional tools/time to go Into
these ideas in proper detail &

Type Checking

Are these types consistent? Can | guess types In a consistent way?

Facts about Type-Related Algorithms

* Robin Milner won the Turing Award in 1991 partially for building "ML,
the first language to include polymorphic type inference together with
a type-safe exception-handling mechanism”
* The most well-known type inference algorithm iIs called Hindley-
Milner type inference

* Type Inference In the full parametric polymorphism environment we
talked about Is undecidable

Type Inference Limits in Typed Racket

) 14

Typed Racket in it's “Caveats and Limitations™ notes "Typed
Racket's local type inference algorithm is currently not able to
Infer types for polymorphic functions that are used on higher-
order arguments that are themselves polymorphic.”

Example that doesn't type check:

(map cons '"(a b c d) "(1 2 3 4))

map IS polymorphic and cons IS too - too much polymorphism!

https://docs.racket-lang.org/ts-guide/caveats.html

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Concerns?
	Slide 3: Functional Language of the Week: Haskell
	Slide 4: Functional Language of the Week: Haskell
	Slide 5: Functional Language of the Week: Haskell
	Slide 6: Types Continued
	Slide 7: Which of the calls below will fail the type checker?
	Slide 8: Type Checking in Racket
	Slide 9: Typed Racket
	Slide 10: Creating your own types
	Slide 11: Reminder: Tree definition
	Slide 12: How do we create a typed Number tree? Reminder, the untyped version: (struct tree (value children) #:transparent)
	Slide 13: Reminder of our leaf checker below. What type is it? (define (leaf? t) (cond [(empty-tree? t) #f] [else (empty? (tree-children t))]))
	Slide 14: Types for Variadic Functions
	Slide 15: Now we can enforce numeric trees!
	Slide 16: Recursive Types
	Slide 17: Types, Leveled Up
	Slide 18: Assume we write 2 variants of the member procedure: one for Numbers, one for Strings. They have the type signatures: (: nmem (-> Number (Listof Number) (U False (Listof Number)))) (: smem (-> String (Listof String) (U False (Listof St
	Slide 19: We want a type signature for a general member!
	Slide 20: Parametric Polymorphism
	Slide 21: Parametric Polymorphism in Typed Racket
	Slide 22: If this is the polymorphic type for length: (: length (All (A) (-> (Listof A) Integer))) what is it for our generic mem member procedure?
	Slide 24: Other Types of Polymorphism
	Slide 25: Fun Facts
	Slide 26
	Slide 27: Fun Facts
	Slide 28: Type-Related Algorithms
	Slide 29: Facts about Type-Related Algorithms
	Slide 30: Type Inference Limits in Typed Racket

