
CSCI 275:
Programming Abstractions
Lecture 13: Types

Fall 2024

Stephen Checkoway

Slides from Molly Q Feldman

Questions? Concerns?

Reminder: Structs

Reminder: Struct Data Types
(struct name (field-a field-b) …)

Racket has a very general mechanism for creating data structures and

their associated procedures

To create our point data type, we can instead use

(struct point (x y))

This will create a new type named point and the following procedures:

(point x y) produces a new point with the given coordinates

(point? obj) returns #t if obj is a point

(point-x p) returns the x field

(point-y p) returns the y field

Example point (struct point (x y))

(define p (point 3 4))

(point? p) ; returns #t

(point? 10) ; returns #f

(point-x p) ; returns 3

(point-y p) ; returns 4

p ; DrRacket prints this as #<point>

(point-x '(a b c)) ; raises an error

One more addition: Make the struct transparent

(struct point (x y) #:transparent)

(point 3 4) => (point 3 4) rather than #<point>

(equal? (point 3 4) (point 3 4)) => #t

#:transparent is a keyword argument

Why? Without it… Hard to Debug

(define (thing p)

(cond [(negative? (point-x p))

(error 'thing "Invalid point: ~s" p)]

[else '...]))

(thing (point -3 2))

=> thing: Invalid point: #<point>

Why? Without it… Equality isn’t structural

; With lists, equal? performs structural

comparison

(equal? '(point 3 4) '(point 3 4)) => #t

; eq? asks if the arguments are the same object

(eq? '(point 3 4) '(point 3 4)) => #f

; With structs, equal? acts like eq? by

default!

(equal? (point 3 4) (point 3 4)) => #f

Let’s build a tree
complex recursive data type!

tree.rkt

#lang racket

; Provide the procedures for working with trees.
(provide tree make-tree empty-tree

tree? empty-tree? leaf?

tree-value tree-children)

; Provide 8 example trees.
(provide empty-tree T1 T2 T3 T4 T5 T6 T7 T8)

Used heavily in

Part 2 of HW 4!

Tree definition and a special value
; Definition of tree datatype
(struct tree (value children) #:transparent)

; An empty tree is represented by null
(define empty-tree null)

; (empty-tree? empty-tree) returns #t

(define empty-tree? null?)

; Convenience constructor

; (make-tree v c1 c2 ... cn) is equivalent to

; (tree v (list c1 c2 ... cn))
(define (make-tree value . children)

(tree value children)) Reminder: variadic function!

Utility procedure

; Returns #t if the tree is a leaf.
(define (leaf? t)

(cond [(empty-tree? t) #f]

[(not (tree? t))

(error 'leaf? "~s is not a tree" t)]

[else (empty? (tree-children t))]))

Example (number) trees

(define T1 (make-tree 50))

(define T2 (make-tree 22))

(define T3 (make-tree 10))

(define T4 (make-tree 5))

(define T5 (make-tree 17))

(define T6 (make-tree 73 T1 T2 T3))

(define T7 (make-tree 100 T4 T5))

(define T8 (make-tree 16 T6 T7))

A tree is represented as a struct: (tree value children).

If you want to count how many children a particular (nonempty) tree
t has, what's the best way to do it?

A.(length (tree-children t))

B.(length (third t))

C.(length (rest t))

D.(length (rest (rest t)))

E.(length (caddr t))

14

Talking about Types

Why do languages have types?

Why do you think some languages have static types?

Why do you think some languages have dynamic

types?

1

6

Dynamically-checked types

Dynamically-typed languages assign values types at runtime

In Racket, we can ask what the type of a value is:
number?, list?, pair?, boolean?, etc.

Functions are forced to check that the types of their input match

the expected type

Racket and Python are examples of dynamically-typed

languages

What does this code do?
(define (mul x y)

(if (= x 0)

0

(* x y)))

(mul 0 'blah)

A. Syntax error

B. Contract violation

C.Runtime error
D.Warning about 'blah

E. Returns 0

1

8

No explicit error checking!

This gives a contract error:

*: contract violation

expected: number?

given: 'blah

Note that the contract error is on *, not mul

(define (mul x y)

(if (= x 0)

0

(* x y)))

(mul 10 'blah)

Implementing explicit error checking

(define (mul x y)

(cond [(not (number? x))

(error 'mul "not a number: ~s" x)]

[(not (number? y))

(error 'mul "not a number: ~s" y)]

[(= x 0) 0]

[else (* x y)]))

(mul 0 'blah)

This gives the following error:
mul: not a number: blah

Aside: Contracts

Brief aside: Contracts

You have probably seen these errors in

all your Racket programming. But what

exactly does “contract violation” mean

here?

Brief aside: Contracts

Contracts are a predicate that declares some fact about a

value that must be true

number? - The value is a number

list? - The value is a list

positive? - The value is positive

pair? - The value is a cons cell

any/c - Every value satisfies this contract

Contracts can help us do runtime error
checking!
(define/contract (mul x y)

; x, y, and return value are numbers

(-> number? number? number?)

(if (= x 0)

0

(* x y)))

(mul 0 'blah) This gives a contract error:

mul: contract violation

expected: number?

given: 'blah

in: the 2nd argument of

(-> number? number? number?)

Challenges of Dynamic Typing

Errors like passing and returning the wrong types of values are not

caught until run time, even with contracts

(define/contract (faclist n)

(-> positive? (listof integer?))

(cond [(equal? n 1) 1]

[else (cons n (faclist (sub1 n)))]))

This has a type error, but it won't be caught until runtime
faclist: broke its own contract

promised: list?

produced: '(6 5 4 3 2 . 1)

Statically-checked types

Statically-typed languages compute a static approximation of

the runtime types

The type of an expression is computed from the types of its

sub expressions

This can be used to rule out a whole class of type errors at

compile time

C, Java, Rust, and Haskell are examples of statically-typed

languages

A Decision!

For the rest of today, we’re going to talk about static

types

We could have done a small vignette of a type functional

programming language (Haskell, Ocaml, etc.)

A Decision!

For the rest of today, we’re going to talk about static

types

Instead: we will discuss types using Typed Racket

Would recommend Racket

over Typed Racket though in

most cases

Really helpful because can give you a

direct comparison between dynamic and

statically typed languages

The presentation here is adapted, with thanks, from the Typed Racket Guide:

https://docs.racket-lang.org/ts-guide/index.html

Also used in a Summary

Problems

Adding Types to Racket

To start off with, what are the types we have available?

Boolean

String

Number – but also a complex hierarchy here including

Integer, Float-Complex, etc.

Adding Types to Functions

We provide type signatures as follows:

(: function-name (-> input-type output-type))

Below is a sum method in Racket. What should its type

signature be?

(define (asum x y)

(+ x y))

A.(: asum (-> Number Number))

B.(: asum (-> Number Number Number))

C.(: asum (-> (Listof Number) Number))

D.Something else

Below is a sum method in Racket. What should its type

signature be?

(define (bsum lst)

(cond [(empty? lst) 0]

[else (+ (first lst) (bsum (rest lst)))]))

A.(: bsum (-> Number Number))

B.(: bsum (-> Number Number Number))

C.(: bsum (-> (Listof Number) Number))

D.Something else

What is Listof?

We decided (: bsum (-> (Listof Number) Number)

is the type for summing the elements of a list.

Listof is not actually a type, but rather a type constructor

(Listof Integer) is meaningful,

(Listof Listof) is not

Similarly, (String String) does not work

Supporting type constructors

(for instance, lists, arrays,

references) is non-trivial

How can we support procedures that output
multiple types?

Motivation: Racket’s member procedure has the following

behavior

(member 4 (list 1 2 3)) gives #f

(member 2 (list 1 2 3)) gives ‘(2 3)

So… how to state the return type if we want to write
(: member (-> Number (Listof Number) ???)

Answer is Union Types!

Union here is inspired by mathematical set union

;number specific member implementation

(: nmem (-> Number (Listof Number)

(U False (Listof Number))))

(define (nmem x lst)

...))

Next Up

Homework 3 is due Friday at 11:59pm

- First Commit due tonight

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Concerns?
	Slide 3: Reminder: Structs
	Slide 4: Reminder: Struct Data Types
	Slide 5: Example point
	Slide 6: One more addition: Make the struct transparent
	Slide 7: Why? Without it…
	Slide 8: Why? Without it…
	Slide 9: Let’s build a tree complex recursive data type!
	Slide 10: tree.rkt
	Slide 11: Tree definition and a special value
	Slide 12: Utility procedure
	Slide 13: Example (number) trees
	Slide 14: A tree is represented as a struct: (tree value children). If you want to count how many children a particular (nonempty) tree t has, what's the best way to do it?
	Slide 15: Talking about Types
	Slide 16: Why do languages have types? Why do you think some languages have static types? Why do you think some languages have dynamic types?
	Slide 17: Dynamically-checked types
	Slide 18: What does this code do? (define (mul x y) (if (= x 0) 0 (* x y))) (mul 0 'blah)
	Slide 19: No explicit error checking!
	Slide 20: Implementing explicit error checking
	Slide 21: Aside: Contracts
	Slide 22: Brief aside: Contracts
	Slide 23: Brief aside: Contracts
	Slide 24: Contracts can help us do runtime error checking!
	Slide 25: Challenges of Dynamic Typing
	Slide 26: Statically-checked types
	Slide 27: A Decision!
	Slide 28: A Decision!
	Slide 29: Adding Types to Racket
	Slide 30: Adding Types to Functions
	Slide 31: Below is a sum method in Racket. What should its type signature be? (define (asum x y) (+ x y))
	Slide 32: Below is a sum method in Racket. What should its type signature be? (define (bsum lst) (cond [(empty? lst) 0] [else (+ (first lst) (bsum (rest lst)))]))
	Slide 33: What is Listof?
	Slide 34: How can we support procedures that output multiple types?
	Slide 35: Answer is Union Types!
	Slide 36: Next Up

