
CSCI 275:
Programming Abstractions
Lecture 12: Structs & Data Types

Spring 2024

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Questions? Concerns?

What are some of the benefits of defining our own data

types? What is an example of a data type you defined

recently (in a class, internship, personal project, etc.)?

4

Constructing data types!

• We're going to construct data types out of lists

• The first element in the list is going to be a symbol that's the name of

the data type

• The other elements in the list will be the fields of the data type

What else!

What do we need to implement a data
type?

Representation for the Data Type: a list with a particular

structure

A way to test whether a thing is an object of type X?

A way to create an object of type X

A way to get field Y from an object of type X

Recognizers

Constructors

Accessors

Running Example: set

A set data type which will hold a (mathematical) set of values for us

Some example sets:

{}

{1,2,3}

{a,b,y,z}

Important attribute of

mathematical sets:

no duplicates!

Representation

• We're going to use lists to represent instances of a data type

• Our set will contain just a single field: the elements the set contains

’(set ()) ‘(set (1 3 5 7 9))

‘(set (a))

‘(set (x z y))

Empty Set Non-Empty Sets

Name of the data type is

the first entry

Recognizers

Recognizers are procedures that return #t or #f corresponding

to whether or not the passed in object is of the appropriate type

Analogous to number? and list?

There are also recognizers that return #t or #f corresponding to

whether or not the passed in object has a particular value of the

type

Analogous to zero? and empty?

Recognizers for our set data type

We want to know if a particular object is a set, so we'll write a procedure
set?

(define (set? obj)

(and (list? obj)

(not (empty? obj))

(eq? (first obj) 'set)))

This is analogous to list? except it returns #t if the object is a set

Just as (empty? x) returns #t if x is an empty list, let's write

(empty-set? x) which returns #t if x is an empty set.

Remember, we're representing a set as a 2-element list where the first is
'set and the second is the list of elements. How do we do this?

A. (define (empty-set? obj)

(empty? obj))

B. (define (empty-set? obj)

(and (= (first obj) 'set)

(empty? (second obj))))

C. (define (empty-set? obj)

(and (set? obj)

(empty? (second obj))))

D. Any of A, B, or C

E. Either B or C

11

Constructors

Now that we know how to recognize if something is an instance of our

data type, we need procedures to create them

Typically, we use the name of the data type itself

Example:

‣ To create a set, we need a list of elements

‣ The list might have duplicates, so we should remove those

(define (set elements)

(list 'set (remove-duplicates elements)))

Special value for our set data type

Just as list has a special value, empty, it might be nice to have an

empty-set

(define empty-set (set empty))

Accessors

We need a way to access the fields of an instance of our data type

For our set example, we have only a single field: a list of elements
• Therefore, we only need a single accessor: set-elements

If we had more fields, we'd need more accessors
• (point x y) needs two accessors: point-x and point-y

• (student name t-number year) needs 3

Note, pay attention to the naming here: hyphens are very Racket

style, they’ll also appear in a related idea later

Set accessor
(define (set-elements s)

(if (set? s)

(second s)

(error 'set-elements "~v is not a set" s)))

There are multiple forms of the (error …) procedure, this one is
(error procedure-name format-string arguments)

The ~v means to substitute a string representation of the object for the ~v

> (set-elements '(1 2 3))

set-elements: '(1 2 3) is not a set

Complete data type example: set
(define (set elements)

(list 'set (remove-duplicates elements)))

(define (set? obj)

(and (list? obj)

(not (empty? obj))

(eq? (first obj) 'set)))

(define (empty-set? obj)

(and (set? obj)

(empty? (second obj))))

(define (set-elements s)

(if (set? s)

(second s)

(error 'set-elements "~v is not a set" s)))

(define empty-set (set empty))

Additional procedures

(define (set-contains? x s)

(member x (set-elements s)))

(define (set-insert x s)

(if (set-contains? x s)

s

(list 'set (cons x (set-elements s)))))

(define (set-union s1 s2)

(foldl set-insert s1 (set-elements s2)))

A set module

#lang racket

(provide set set? empty-set? set-elements)

(provide set-contains? set-insert set-union)

(provide empty-set)

…

Make the definitions available

to use by others!

Imagine you have a point data type with this constructor.
(define (point x y)

(list x y))

Why is this constructor for a point data type not great?
A. The result cannot be distinguished from a normal list

B.(point x y) should return a closure (a lambda), not a list

C.(list x y) should be '(x y)

D. A and C

E. The constructor is correct
1

9

Imagine you have a point data type with this constructor and

recognizer.
(define (point x y)

(list 'point x y))

(define (point? obj)

(equal? (first obj) 'point))

What is wrong with this recognizer?

A. It doesn't always return #t when passed a point

B. It doesn't always return #f when passed something other than a

point
C.equal? should be =

D. A and B

E. B and C
2

0

Imagine you have a point data type with this constructor and accessor.
(define (point x y)

(list 'point x y))

(define (point-x p)

(second p))

What is wrong with this accessor, if anything?

A. It doesn't return the x field of a point
B. When called with something that's not a point, it gives an error

rather than returning #f
C. When called with something that's not a point, it doesn't always

give an error
D. More than one of A, B, or C
E. Nothing is wrong with it

2

1

Example: point
(define (point x y)

(list 'point x y))

(define (point? obj)

(and (list? obj)

(not (empty? obj))

(eq? (first obj) 'point)))

(define (point-x p)

(cond [(point? p) (second p)]

[else (error 'point-x "~v is not a point" p)]))

(define (point-y p)

(cond [(point? p) (third p)]

[else (error 'point-y "~v is not a point" p)]))

Too much repetitive code to write by hand!
(struct name (field-a field-b) …)

Racket has a very general mechanism for creating data structures and

their associated procedures

To create our point data type, we can instead use

(struct point (x y))

This will create a new type named point and the following procedures:

(point x y) produces a new point with the given coordinates

(point? obj) returns #t if obj is a point

(point-x p) returns the x field

(point-y p) returns the y field

Next Up

Homework 2 is due tonight

Homework 3 will be posted later today

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Concerns?
	Slide 4: What are some of the benefits of defining our own data types? What is an example of a data type you defined recently (in a class, internship, personal project, etc.)?
	Slide 5: Constructing data types!
	Slide 6: What do we need to implement a data type?
	Slide 7: Running Example: set
	Slide 8: Representation
	Slide 9: Recognizers
	Slide 10: Recognizers for our set data type
	Slide 11: Just as (empty? x) returns #t if x is an empty list, let's write (empty-set? x) which returns #t if x is an empty set. Remember, we're representing a set as a 2-element list where the first is 'set and the second is the list of elements. How do
	Slide 12: Constructors
	Slide 13: Special value for our set data type
	Slide 14: Accessors
	Slide 15: Set accessor
	Slide 16: Complete data type example: set
	Slide 17: Additional procedures
	Slide 18: A set module
	Slide 19: Imagine you have a point data type with this constructor. (define (point x y) (list x y)) Why is this constructor for a point data type not great?
	Slide 20: Imagine you have a point data type with this constructor and recognizer. (define (point x y) (list 'point x y)) (define (point? obj) (equal? (first obj) 'point)) What is wrong with this recognizer?
	Slide 21: Imagine you have a point data type with this constructor and accessor. (define (point x y) (list 'point x y)) (define (point-x p) (second p)) What is wrong with this accessor, if anything?
	Slide 22: Example: point
	Slide 23: Too much repetitive code to write by hand!
	Slide 40: Next Up

