
CSCI 275:
Programming Abstractions
Lecture 11: Higher Order Wrap-Up

Spring 2024

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Questions? Comments?

• Wait, hold on! Python is not a functional paradigm language

• Paradigms are a gray area….

• The transition from Python 2 to Python 3 facilitated

significantly better functional programming in Python

• This was, more or less, due to popular demand

• A (long-running) guide to functional programming in Python

https://docs.python.org/3/howto/functional.html#

Functional Language of the Week: Python

https://docs.python.org/3/howto/functional.html

Functional Language of the Week: Python

foldl

Reminder: Light Switch State Machine

Possible actions: 'up, 'down, 'flip

Possible states: 'on, 'off

We want

(state-after '(up flip)) => 'off

Reminder: Lightswitch, as foldr and foldl

(define state-after

(lambda (actions)

(foldr next-state 'off (reverse actions))))

(define (state-after-left actions)

(foldl next-state 'off actions))

foldl vs. foldr

foldl combines elements of the list starting with the first (left-most) element

foldr combines elements of the list starting with the last (right-most) element

f f f f f finitial-val return-value

1 2 3 4 5 6

f f f f f freturn-value base-case

1 2 3 4 5 6

But wait: more “thoughtful” motivation for foldl

Reminder: Tail Recursion and using an “accumulator"

(define (fact-a n acc)

(if (<= n 1)

acc ; return the accumulator

(fact-a (sub1 n) (* n acc))))

(define (fact2 n)

(fact-a n 1))

Four things to notice:

- We defined a recursive helper function that takes an additional param
- We provide an initial value for the accumulator in fact2's call to fact-a

- The base case returns the accumulator

- fact-a is tail-recursive

Product: An Accumulator Pattern

(define (product-a lst acc)

(cond [(empty? lst) acc]

[else (product-a (rest lst)

(* (first lst) acc))]))

(define (product lst)

(product-a lst 1))

Reverse: An Accumulator Pattern

(define (reverse-a lst acc)

(cond [(empty? lst) acc]

[else (reverse-a (rest lst)

(cons (first lst) acc))]))

(define (reverse lst)

(reverse-a lst empty))

Map: An Accumulator Pattern

(define (map-a proc lst acc)

(cond [(empty? lst) acc]

[else (map-a proc (rest lst)

(cons (proc (first lst)) acc))]))

(define (map proc lst)

(reverse (map-a proc lst empty)))

Accumulator Pattern Similarities

Basic structure is the same (rewriting slightly)
(define (fun-a lst acc)

(cond [(empty? lst) acc]

[else

(fun-a (rest lst)

(combine (first lst) acc))]))

(define (fun … lst)

(fun-a lst initial-val))

Function initial-val (combine head acc)

product 1 (* head acc)

reverse empty (cons head acc)

map empty (cons (proc head) acc)
We must reverse the result

Abstraction: fold left

(foldl combine initial-val lst)

combine: 𝛼 × 𝛽 → 𝛽
initial-val: 𝛽
lst: list of 𝛼
foldl: (𝛼 × 𝛽 → 𝛽) × 𝛽 × (list of 𝛼) → 𝛽

Elements of lst = (x1 x2 ... xn) and initial-val are

combined by computing
z1 = (combine x1 initial-val)

z2 = (combine x2 z1)

z3 = (combine x3 z2)

⋮
zn = (combine xn zn-1)

product as fold left
(foldl combine initial-val lst)

(define (product lst)

(foldl * 1 lst))

cons

1 cons

2 cons

3 cons

4 cons

5
'(

)

*

5 *

4 *

3 *

2 *

1 1

combine: number × number → number

initial-val: number

lst: list of number

reverse as fold left
(foldl combine base-case lst)

(define (reverse lst)

(foldl cons empty lst))

cons

1 cons

2 cons

3 cons

4 cons

5
'(

)

cons

5 cons

4 cons

3 cons

2 cons

1
'(

)

combine: 𝛼 × list of 𝛼 → list of 𝛼
initial-val: list of 𝛼
lst: list of 𝛼

Which fold to pick?

• “Most of the time”, either will work +/- a call to reverse

• Be careful when combine has ordering effects

• If the computation makes more sense as a right-to-left
computation on the elements of the list, then use foldr

• But, most of the time, use foldl

• Lists run left-to-right in Racket world
• Fold in most other functional contexts assumes foldl

• Tail recursive, and thus more efficient

Variable Argument Procedures

Variable argument procedures
(define foo (lambda params body))

When params is a list of identifiers (as we know it thus far!), the

identifiers are bound to the values of the procedure's arguments

When params is an identifier (i.e., not a list), then the identifier is

bound to a list of the procedure's arguments

(define count-args

(lambda params

(length params)))

(count-args 'a 2 #f) => 3

Folks asked about why no parens

worked in some previous

homeworks, this is why!

Required parameters + variable parameters

(define foo (lambda (x y z . params)) body)

Separate the required parameters from the list of variable

parameters with a period

(define drop-2

(lambda (x y . lst) lst))

(drop-2 1 2 3 4)

x is bound to 1

y is bound to 2

lst is bound to '(3 4)

Review & Practice

Potentially Helpful Baking Analogies

map apply foldl/r

You are making cherry

cookies. You need have

the dough on the pan.

You then need to put a

cherry in the middle of

every cookie.

You are the Cookie

Monster. You have a big

pile of cookies and

you’re eating them all.

You are making

meringue. An important

step is to fold in air to

make it light and fluffy.

Each turn of the spatula

adds more air!

There's a standard library procedure (round x) that takes a

number as input and rounds it to the nearest integer.

If we have a list of numbers '(1.1 2.9 3.5 4.0) and we want a

list of rounded numbers '(1.0 3.0 4.0 4.0), how can we get

that?

A.(map (round x) '(1.1 2.9 3.5 4.0))

B.(map (lambda (x) (round x)) '(1.1 2.9 3.5 4.0))

C.(map round '(1.1 2.9 3.5 4.0))

D.(round '(1.1 2.9 3.5 4.0))

E.More than one of the above

Distance of a 2-d point from the origin

(define (distance-from-origin x y)

(sqrt (+ (* x x) (* y y))))

If we have a point
(define p '(5 -8)) how can we get its distance from

the origin?

A.(distance-from-origin p)

B.(apply distance-from-origin p)

C.(distance-from-origin (first p) (second p))

D.More than one of the above

2

7

Shapes

Racket library 2htdp/image has procedures for creating

images

(require 2htdp/image)

(circle 20 'solid 'red) =>

(rectangle 50 20 'outline 'blue) =>
radius

width height

If we have a list of radii, say lst is '(20 30 50 60) and we want

a list of solid, red circles with those radii, which should we use?

(____ lst) => (list)

A.(map circle 'solid 'red lst)

B.(map (lambda (r) (circle r 'solid 'red)) lst)

C.(apply circle 'solid 'red lst)

D.(apply (lambda (r) (circle r 'solid 'red)) lst)

E.(foldr (lambda (r) (circle r 'solid 'red)) empty lst)

2

9

Combining images

(empty-scene 320 180) gives a white rectangle with a black border we can

draw on

(place-image img x y scene) returns a new image by starting with scene

and drawing img at (x, y)

(let* ([c (circle 40 'solid 'blue)]

[r (rectangle 200 30 'solid 'red)]

[s0 (empty-scene 320 180)]

[s1 (place-image c 50 90 s0)]

[s2 (place-image r 150 90 s1)]

[s3 (place-image c 180 70 s2)])

s3)

Imagine we have a list of 3-element lists (shape x y), e.g., lst is the list

(list (list (circle 40 'solid 'blue) 50 90)

(list (rectangle 200 30 'solid 'red) 150 90)

(list (circle 40 'solid 'purple) 180 70))

How would you draw those shapes on a scene at their coordinates?

A. (map (lambda (i) (place-image (first i)

(second i) (third i) scene))

lst)

B. (apply (lambda (i) (place-image (first i)

(second i) (third i) scene))

lst)

C. (foldr (lambda (i s) (place-image (first i)

(second i) (third i) s))

scene lst)
3

1

Try out the previous question
on your own!

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2
	Slide 3
	Slide 4
	Slide 5: foldl
	Slide 6: Reminder: Light Switch State Machine
	Slide 7: Reminder: Lightswitch, as foldr and foldl
	Slide 8: foldl vs. foldr
	Slide 9: But wait: more “thoughtful” motivation for foldl
	Slide 10: Reminder: Tail Recursion and using an “accumulator"
	Slide 11: Product: An Accumulator Pattern
	Slide 12: Reverse: An Accumulator Pattern
	Slide 13: Map: An Accumulator Pattern
	Slide 14: Accumulator Pattern Similarities
	Slide 15: Abstraction: fold left
	Slide 16: product as fold left
	Slide 17: reverse as fold left
	Slide 18: Which fold to pick?
	Slide 19: Variable Argument Procedures
	Slide 20: Variable argument procedures
	Slide 21: Required parameters + variable parameters
	Slide 23: Review & Practice
	Slide 24
	Slide 25: There's a standard library procedure (round x) that takes a number as input and rounds it to the nearest integer. If we have a list of numbers '(1.1 2.9 3.5 4.0) and we want a list of rounded numbers '(1.0 3.0 4.0 4.0), how can we get that?
	Slide 26: Distance of a 2-d point from the origin
	Slide 27: (define (distance-from-origin x y) (sqrt (+ (* x x) (* y y)))) If we have a point (define p '(5 -8)) how can we get its distance from the origin?
	Slide 28: Shapes
	Slide 29: If we have a list of radii, say lst is '(20 30 50 60) and we want a list of solid, red circles with those radii, which should we use? (____ lst) => (list)
	Slide 30: Combining images
	Slide 31: Imagine we have a list of 3-element lists (shape x y), e.g., lst is the list (list (list (circle 40 'solid 'blue) 50 90) (list (rectangle 200 30 'solid 'red) 150 90) (list (circle 40 'solid 'purple) 180 70)) How would you draw those
	Slide 32: Try out the previous question on your own!

