
CSCI 275:
Programming Abstractions
Lecture 10: The world of folds

Fall 2024

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Questions for the good of the group?

A. List of 𝛽, List of 𝛽
B. List of 𝛼, List of 𝛼
C. List of 𝛼, list of 𝛽
D. List of 𝛽, List of 𝛼
E.Something else

3

𝛼 and 𝛽 are types. And let’s say proc takes elements

of type 𝛼 and produces elements of type 𝛽 (i.e. the type
of proc is 𝛼 → 𝛽).

When calling (map proc lst), what is the type of

lst? What is the type of map’s return?

Review: map
Applies a procedure to each element of a list

𝛼 and 𝛽 are types

(map proc lst)

proc : 𝛼 → 𝛽
lst : list of 𝛼
map returns list of 𝛽

E.g.,

𝛼 = number, 𝛽 = integer

(map floor '(1.3 2.8 -8.5))

Review: apply
Applies a procedure the arguments in a list

(apply proc lst)

proc : 𝛼1 × 𝛼2 × ⋯ × 𝛼n → 𝛽
lst : (𝛼1 𝛼2 … 𝛼n)
apply returns 𝛽

E.g.,
𝛼1 = number, 𝛼2 = boolean, 𝛽 = number

(apply (lambda (n b) (if b (- n) n))

'(5 #t))

(define (fun lst)

(cond [(empty? lst) base-case]

[else (let ([head (first lst)]

[result (fun (rest lst))])

(combine head result))]))

lst: list of 𝛼
base-case: 𝛽

A.combine: 𝛼 × 𝛽 → 𝛼
B.combine: 𝛼 × 𝛽 → 𝛽
C.combine: 𝛽 × 𝛼 → 𝛼
D.combine: 𝛽 × 𝛼 → 𝛽

What kind of function is combine?

(input type to output type)

Where we left off…..
Basic structure is the same!
(define (fun … lst)

(cond [(empty? lst) base-case]

[else

(let ([head (first lst)]

[result (fun … (rest lst))])

(combine head result))]))

Function base-case (combine head result)

sum 0 (+ head result)

length 0 (+ 1 result)

map empty (cons (proc head) result)

remove* empty
(if (equal? x head) result

(cons head result))

Abstraction: fold right
(foldr combine base-case lst)

combine: 𝛼 × 𝛽 → 𝛽
base-case: 𝛽
lst: list of 𝛼
foldr: (𝛼 × 𝛽 → 𝛽) × 𝛽 × (list of 𝛼) → 𝛽

Elements of lst = (x1 x2 ... xn) and base-case are combined

by computing
zn = (combine xn base-case)

zn-1 = (combine xn-1 zn)

zn-2 = (combine xn-2 zn-1)

⋮
z1 = (combine x1 z2)

Abstraction: fold right
(foldr combine base-case lst)

cons

1 cons

2 cons

3 cons

4 cons

5 '()

combine

1 combine

2 combine

3 combine

4 combine

5 base-case

Possible input lst Executing foldr

sum as a fold right
(foldr combine base-case lst)

(define sum

(lambda (lst)

(foldr + 0 lst)))

cons

1 cons

2 cons

3 cons

4 cons

5 '()

+

1 +

2 +

3 +

4 +

5 0

combine: number × number → number

base-case: number

lst: list of number

length as a fold right
(foldr combine base-case lst)

(define length

(lambda (lst)

(foldr (lambda (head result) (+ 1 result)) 0 lst)))

cons

1 cons

2 cons

3 cons

4 cons

5 '()

λ

1 λ

2 λ

3 λ

4 λ

5 0

map as fold right
(foldr combine base-case lst)

(define (map proc lst)

(foldr (lambda (head result)

(cons (proc head) result))

empty

lst))

proc: 𝛼 → 𝛽
combine: 𝛼 × (list of 𝛽) → list of 𝛽
base-case: list of 𝛽
lst: list of 𝛼
map: (𝛼 → 𝛽) × (list of 𝛼) → list of 𝛽

remove* as fold right
(foldr combine base-case lst)

(define (remove* x lst)

(foldr (lambda (head result)

(if (equal? x head)

result

(cons head result)))

empty

lst))

x: 𝛼
combine: 𝛼 × (list of 𝛼) → list of 𝛼
base-case: list of 𝛼
lst: list of 𝛼
remove*: 𝛼 × (list of 𝛼) → list of 𝛼
map: (𝛼 → 𝛽) × (list of 𝛼) → list of 𝛽

Consider the procedure
(foldr (lambda (str num)

(+ num (string-length str)))

0

‘(“red” “green” “blue”))

What does this do?

A. Multiplies all the string lengths

B. Counts number of elements in the list

C. Sums all the string lengths

D. Error

14

Example: a light switch "state machine"

Example: a light switch "state machine"

Consider a light switch connected to a light

The light is in one of two states: on and off
• Represent this with symbols 'on and 'off

There are three actions we can take
• 'up: move the switch to the up position; turns the light on

• 'down: move the switch to the down position; turns the light off

• 'flip: flip the position of the switch; changes the state of the light

If the light is initially 'off, then after the sequence of actions

'(up up down flip flip flip), the light will be 'on

Implement the state machine
Possible actions: 'up, 'down, 'flip

Possible states: 'on, 'off

Write a (next-state action state) function that returns

the next state of the light after the action is performed in the

given state (no higher order needed!)

Write a (state-after actions) that returns the state of the

light assuming it's initially 'off and the actions in the list

actions are performed in order

• Use foldr!

• Be careful about the order:
(state-after '(up flip)) => 'off

Takeaway from state machine example

foldr really is fold right

1 2 3 4 5 6

f freturn-value base-casefff f

Next Up

Readings do continue!

Homework 2 is live, due Friday at 11:59pm via GitHub

• Feel free to use whatever structures you’d like to solve it (higher order not

required, HW3/4 they will be!)

Weekly Reflection due Today

Summary Problems later today!

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions for the good of the group?
	Slide 3: 𝛼 and 𝛽 are types. And let’s say proc takes elements of type 𝛼 and produces elements of type 𝛽 (i.e. the type of proc is 𝛼 → 𝛽). When calling (map proc lst), what is the type of lst? What is the type of map’s return?
	Slide 4: Review: map
	Slide 5: Review: apply
	Slide 6: (define (fun lst) (cond [(empty? lst) base-case] [else (let ([head (first lst)] [result (fun (rest lst))]) (combine head result))])) lst: list of 𝛼 base-case: 𝛽
	Slide 7: Where we left off…..
	Slide 8: Abstraction: fold right
	Slide 9: Abstraction: fold right
	Slide 10: sum as a fold right
	Slide 11: length as a fold right
	Slide 12: map as fold right
	Slide 13: remove* as fold right
	Slide 14: Consider the procedure (foldr (lambda (str num) (+ num (string-length str))) 0 ‘(“red” “green” “blue”)) What does this do?
	Slide 16: Example: a light switch "state machine"
	Slide 17: Example: a light switch "state machine"
	Slide 18: Implement the state machine
	Slide 19: Takeaway from state machine example
	Slide 23: Next Up

