
CSCI 275:
Programming Abstractions
Lecture 8: Tail Recursion & Higher Order Start

Fall 2024

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

• Purely functional language for reactive web programming

• Benefit is static types, so very few web runtime errors

• Began in 2012 (new!)

• “Outside of industry” origins: Undergraduate thesis and then

used/sponsored work from companies
• https://elm-lang.org/assets/papers/concurrent-frp.pdf

• Best known for a strong user community & the best error

messages of any programming language!

• Fun fact: no generic map

Functional Language of the Week: Elm

https://elm-lang.org/assets/papers/concurrent-frp.pdf

Functional Language of the Week: Elm

https://twitter.com/GregorySchier/status/732830868562182144/photo/1

https://twitter.com/GregorySchier/status/732830868562182144/photo/1

Functional Language of the Week: Elm

https://elm-lang.org/news/the-syntax-cliff

Recommended reading about learning a new language and

some of the ways Elm has recently addressed it!

https://elm-lang.org/news/the-syntax-cliff

Tail Recursion, or how to be
efficient

Loops and efficiency

Compare a C (or Java) function

to compute the factorial

int fact(int n) {

int product = 1;

while (n > 0) {

product *= n;

n -= 1;

}

return product;

}

versus a recursive Racket implementation

(define (fact n)

(if (<= n 1)

1

(* n

(fact (- n 1)))))

How do these differ?

Specifically think about the number of

function calls.

What does tail recursion mean?

A function is tail-recursive if the last thing it does is to recurse

and return the result of that recursion

Example:
(define (foo x y)

(if (zero? x)

y

(foo (sub1 x) (+ x y))))

When the condition is satisfied, y is returned, otherwise foo is

called again with some different parameters and that value is

returned
To be efficient, Racket internally converts all tail-recursions into loops

Our factorial example is not tail recursive

(define (fact n)

(if (<= n 1)

1

(* n (fact (- n 1)))))

The last thing fact does is perform a multiplication

The recursion happens before the multiplication

Our factorial is not tail recursive

Given (fact 3), we end up with

(fact 3) => (* 3 (fact 2))

=> (* 3 (* 2 (fact 1)))

=> (* 3 (* 2 (fact 1)))

=> (* 3 (* 2 1))

=> (* 3 2)

=> 6

Is this procedure tail recursive?
(define (length lst)

(cond [(empty? lst) 0]

[else (+ 1 (length (rest lst)))]))

A.Yes

B.No

C.It depends on how long the list is

1

2

Solution: Use an "accumulator"

(define (fact-a n acc)

(if (<= n 1)

acc ; return the accumulator

(fact-a (sub1 n) (* n acc))))

(define (fact2 n)

(fact-a n 1))

Four things to notice:

- We defined a recursive helper function that takes an additional param
- We provide an initial value for the accumulator in fact2's call to fact-a

- The base case returns the accumulator

- fact-a is tail-recursive

fact2 is tail-recursive

(fact2 4) => (fact-a 4 1)

=> (fact-a 3 4)

=> (fact-a 2 12)

=> (fact-a 1 24)

=> 24

(define (fact-a n acc)

(if (<= n 1)

acc ; return the accumulator

(fact-a (sub1 n) (* n acc))))

(define (fact2 n)

(fact-a n 1))

BTW: we can use letrec instead of two defines

(define (fact-3 n)

(letrec ([fact-a (lambda (n acc)

(if (<= n 1)

acc

(fact-a (sub1 n) (* n acc))))])

(fact-a n 1)))

(define (fact-a n acc)

(if (<= n 1)

acc ; return the accumulator

(fact-a (sub1 n) (* n acc))))

(define (fact2 n)

(fact-a n 1))

Benefit: fact-a is not

exportable! It’s a “private”

definition.

Is this procedure tail recursive?
; Return the nth element of lst

(define (list-ref lst n)

(cond [(empty? lst)

(error 'list-ref "List too short")]

[(zero? n) (first lst)]

[else (list-ref (rest lst) (sub1 n))]))

A. Yes

B. No

C. I have no idea!
18

How to throw errors

in Racket

“What’s the point?”

o There are numerous ways to solve

computational problems

o Language design and features

allow us to solve problems

differently (or more easily)

o Pattern matching in CS

o These are all tools in your toolbox

o e.g. iteration, recursion, tail

recursion

So how does this become a loop?

Use variables for the parameters and update them each time through

the loop
(define (fact-a n acc)

(if (<= n 1)

acc ; return the accumulator

(fact-a (sub1 n) (* n acc))))

becomes (pseudocode)
def fact-a(n, acc):

loop:

if n <= 1:

return acc

n, acc = n - 1, n * acc

Another tool: map

Motivation

You have a list of data lst and you have a procedure f and you

want to call f on every element of lst, getting a new list back

containing the results

E.g., you have '(1 2 3) and you want

(list (f 1) (f 2) (f 3))

Example: Changing HTTP to HTTPS

Imagine we had a list of URLs like
(define urls

‘(“http://cs.oberlin.edu"

”http://thelocal.se”

"http://duckduckgo.com"))

and we want to change them all to secure HTTP (https://)URLs

‘(“https://cs.oberlin.edu"

”https://thelocal.se”

"https://duckduckgo.com")

we could write a procedure turn a list of URLs into a list of different URLs

Example: Changing HTTP to HTTPS

(define (securify lst)

(cond [(empty? lst) lst]

[else

(cons (string-replace (first lst) "http" "https")

(securify (rest lst)))]))

Example: List of courses

We have a list of courses (represented as a list) like
(define COURSES

'((CSCI 150 "Professor Emily")

(CSCI 151 "Professor Eck")

(CSCI 210 "Professor Cynthia")

(MATH 220 "Professor Bosch")))

and we want just a list of course numbers '(150 151 241 220)

We can write a procedure to turn a list of courses into a list of

numbers

Example: List of courses

(define (course-numbers lst)

(cond [(empty? lst) empty]

[else (let* ([course (first lst)]

[num (second course)]

[others (course-numbers (rest lst))])

(cons num others))]))

What similarities did you notice

between the previous examples?

Similarities

In each case, we have a list of elements of type 𝛼

We have an operation we want to apply that takes a value of type

𝛼 and returns a value of type 𝛽

We want to apply that operation to each element of our list to

get a list of elements of type 𝛽

--

URLs: 𝛼 = http URL, 𝛽 = https URL (both were strings here)

Courses: 𝛼 = course (as a list), 𝛽 = number

Similarities
In each case, we have:

A list of 𝛼
An operation 𝛼 → 𝛽

And our output is a list of 𝛽

(define (NAME lst)

(cond [(empty? lst) empty]

[else (cons (SOMETHING APPLIED TO FIRST)

(NAME (rest lst))]))

Enter: Map! (map proc lst)

map calls the procedure proc on every element in list lst

(map f '(1 2 3 4)) =>

(list (f 1) (f 2) (f 3) (f 4))

(map sub1 '(10 15 20)) =>

'(9 14 19)

(map (lambda (x) (list x x)) '(a b c))

=> '((a a) (b b) (c c))

(map first '((a 5) (b 6) (c 7))) => '(a b c)

Rewriting our examples with map

(define (securify lst)

(map (lambda (url)

(string-replace url “http” “https”))

lst))

(define (course-numbers lst)

(map second lst))

What is the result of this?

(map rest '((a 5) (b 6) (c 7)))

A.'((5) (6) (7))

B.'(5 6 7)

C.'((b 6) (c 7))

D.'(5) '(6) '(7)

E.'(b c)

33

What is the result of this?

(map (lambda (lst) (cons (first lst) lst))

'((1 2) (3 4)))

A.'(1 3)

B.'((1 1 2) (3 3 4))

C.'((1 (1 2)) (3 (3 4)))

D.'((1 4) (2 3))

E.'((1 3) (2 4))

34

Next Up

Reminder about readings as another resource!

Homework 1 is due Friday at 11:59pm via Github

Extension form is the only way to ask for an extension!

Summary Problems will be posted by Monday

	Slide 1: CSCI 275: Programming Abstractions
	Slide 4
	Slide 5: Functional Language of the Week: Elm
	Slide 6: Functional Language of the Week: Elm
	Slide 7: Tail Recursion, or how to be efficient
	Slide 8: Loops and efficiency
	Slide 9: What does tail recursion mean?
	Slide 10: Our factorial example is not tail recursive
	Slide 11: Our factorial is not tail recursive
	Slide 12: Is this procedure tail recursive? (define (length lst) (cond [(empty? lst) 0] [else (+ 1 (length (rest lst)))]))
	Slide 13: Solution: Use an "accumulator"
	Slide 14: fact2 is tail-recursive
	Slide 15: BTW: we can use letrec instead of two defines
	Slide 18: Is this procedure tail recursive? ; Return the nth element of lst (define (list-ref lst n) (cond [(empty? lst) (error 'list-ref "List too short")] [(zero? n) (first lst)] [else (list-ref (rest lst) (sub1 n))]))
	Slide 20: “What’s the point?”
	Slide 21: So how does this become a loop?
	Slide 22: Another tool: map
	Slide 23: Motivation
	Slide 24: Example: Changing HTTP to HTTPS
	Slide 25: Example: Changing HTTP to HTTPS
	Slide 26: Example: List of courses
	Slide 27: Example: List of courses
	Slide 28: What similarities did you notice between the previous examples?
	Slide 29: Similarities
	Slide 30: Similarities
	Slide 31: Enter: Map!
	Slide 32: Rewriting our examples with map
	Slide 33: What is the result of this? (map rest '((a 5) (b 6) (c 7)))
	Slide 34: What is the result of this? (map (lambda (lst) (cons (first lst) lst)) '((1 2) (3 4)))
	Slide 41: Next Up

