
CSCI 275:
Programming Abstractions
Lecture 06: Environments & Evaluation

Fall 2024

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Goals for Today’s Class

More helpful language constructs

Gain a more nuanced sense of how we evaluate terms

and store information in Racket

Why? This helps your mental model of execution! You can

better learn how to solve errors you encounter

Useful Racket (HW1 and on!)

Core Functional Procedure: filter
(filter pred lst)

filter takes a predicate and a list and returns a list as follows:
- For each element x in lst, run (pred x)

- If (pred x) returns anything other than #f, add x to the list to

return

Examples

(filter positive? '(2 -3 4 5 -1 0)) => '(2 4 5)

(filter (lambda (s) (string-prefix? s "A"))

'("Ari" "Jane" "Ali")) => '("Ari" "Ali")

Let’s write a filter function!

But first, some useful syntactic sugar that will save you some typing

(define my-filter

(lambda (pred lst)

(cond [… …]

…

[else …])))

(define (my-filter pred lst)

(cond [… …]

…

[else …]))

Passing a closure to filter

(define (filter pred lst)

(cond [(empty? lst) empty]

[(pred (first lst)) (cons (first lst)

(filter pred (rest lst)))]

[else (filter pred (rest lst))]))

(define (foo prefix lst)

(filter (lambda (s) (string-prefix? s prefix)) lst))

It’s a value, we can pass it around!

An implementation of filter, follows the

“list recursion” pattern

How can we use filter to write a similar procedure to

small-enough, where this time we just filter out the

too long strings? Assume the input list is called lst.

A.(filter (lambda (x) (< (string-length x) 5)) lst)

B.(filter (lambda (x) (< (string-length lst) 5)) lst)

C.(filter (lambda (x) (< string-length 5)) lst)

D.(filter small-enough lst)

E.Something else

Some (hint: useful) Racket built-ins

member determines whether an element is in a list or not;

returns #f if not, the list starting with the element if so

> (member '(2 3) '(1 2 3 4))

#f

> (member '(2 3) '(1 (2 3) 4))

'((2 3) 4)

Some (hint: useful) Racket built-ins

remove takes an element e and removes the first

instance of e in the provided list; returns the resulting list

> (remove 'x '(a b c x z))

'(a b c z)

> (remove 'x '(x a x z))

'(a x z)

> (remove 'x '(1 2 3))

'(1 2 3)

Some (hint: useful) Racket built-ins

max takes any number of numeric arguments and returns

the largest

> (max 4 5)

5

> (max -1 0 -3)

0

Extending Procedures

Multiple closures
The result of (lambda (x y z) …) is a closure and closures are values

Hence (define fun (lambda (x y z) …)) defines fun to be the

closure and we can call (fun 1 2 3)

But we can also return closures from procedures

(define f

(lambda(x)

(lambda (y)

(+ x y))))

(define (f x)

(lambda (y)

(+ x y)))

(define g

(lambda (x)

(lambda (y)

(- x y))))

What is (g 3 4)?

A.3

B.4

C.-1

D.1

E.An error

Evaluating Racket Terms

Expression evaluation
Scheme evaluates s-expressions to produce values

The value of '() is '()

The value of a variable is the value bound to it
e.g., the variable null is bound to '()

The value of an atom is the atom itself

The value of a non-null list depends on the head of the list.

Special form? Special evaluation.

Something else? Procedure application.1

9

We’ve seen this already with define

(special form) and list (built-in

procedure)

Procedure evaluation
(foo 1 2 #t) applies the procedure bound to the variable foo to the

arguments 1, 2, and #t

(+ 1 2 3) applies + to 1, 2, and 3, performing addition

(* 5 (- x y) (/ z 8)) computes 5(x - y)(z / 8)

(list 32 5 8) creates the list '(32 5 8)

(list-ref (list 32 5 8) 2) returns the element of '(32 5 8) at

index 2 namely 8

Note that (1 2 3) is invalid because 1 isn't a special form nor is it a procedure
2

0

Procedure evaluation order
(s-exp0 s-exp2 ... s-expn)

Racket evaluates each of the s-expressions in turn
-s-exp0 must evaluate to a procedure value

-s-exp1 through s-expn are evaluated to produce values

- Only then, the procedure is applied to the n arguments
(+ (* 2 3) 8)

-+ evaluates to the addition procedure

-(* 2 3) is evaluated

‣ * evaluates to the multiplication procedure

‣ 2 and 3 evaluate to themselves

‣ multiplication procedure is applied to 2 and 3, producing 6

-8 evaluates to itself

- addition procedure is applied to 6 and 8, producing 14

2

1

Next Up

HW0 is due TODAY at 11:59pm – make sure to check your

Github account online to make sure all the code pushed

HW1 is live – first commit Monday

	Slide 1: CSCI 275: Programming Abstractions
	Slide 4: Goals for Today’s Class
	Slide 5: Useful Racket (HW1 and on!)
	Slide 6: Core Functional Procedure: filter
	Slide 7: Let’s write a filter function!
	Slide 8: Passing a closure to filter
	Slide 9: How can we use filter to write a similar procedure to small-enough, where this time we just filter out the too long strings? Assume the input list is called lst.
	Slide 10: Some (hint: useful) Racket built-ins
	Slide 12: Some (hint: useful) Racket built-ins
	Slide 13: Some (hint: useful) Racket built-ins
	Slide 14: Extending Procedures
	Slide 15: Multiple closures
	Slide 16: (define g (lambda (x) (lambda (y) (- x y)))) What is (g 3 4)?
	Slide 18: Evaluating Racket Terms
	Slide 19: Expression evaluation
	Slide 20: Procedure evaluation
	Slide 21: Procedure evaluation order
	Slide 45: Next Up

