
CSCI 275:
Programming Abstractions
Lecture 05: Function Design, Part 1

Fall 2024

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Come get your nametag up

front as you enter!

Note will be recording audio

today!

Questions? Concerns?

Goals for Today’s Class

Practice, practice, practice

Introduction to some additional helpful constructs for writing

procedures in Racket

Functional Language of the Week: OCaml

4

• Developed by Inria (France)

• One of the core modern variants of the ML language

• ML is one of the classic functional languages in the same group as

Lisp

• ML handles types in a neat way

• Used as the backend for the theorem proving language Coq

• Jane Street Capital uses OCaml exclusively

Functional Language of the Week: OCaml

5https://try.ocamlpro.com/

(define swap

(lambda (lst)

(cons (car (cdr lst))

(cons (car lst)

(cdr (cdr lst))))))

Modules in Racket

Modules in Racket

Each file that starts with #lang creates a module named after the file

#lang also specifies the language of the file

Racket was designed to implement programming languages

• We will stick mostly with Racket itself
• All of our files start with #lang racket

Exposing definitions
(provide …)

By default, each definition you make in a Racket file is private to the file

To expose the definition, you use (provide …)

To expose all definitions, you use
(provide (all-defined-out))

#lang racket

(provide (all-defined-out))

(define mul2

(lambda (x)

(* x 2))

Exposing only some definitions
(provide sym1 sym2…)

You can specify exactly which definitions are exposed by specifying them via
one or more provides

#lang racket

(provide foo-a foo-b)

(provide bar-a bar-b)

(define helper …) ; Not exposed

(define foo-a …)

(define foo-b …)

(define bar-a …)

(define bar-b …)

Importing definitions from modules
(require …)

To get access to a module's definitions we need to require the

module

We see this in the tests.rkt files in the assignments require the

homework file (require "hw0.rkt") imports the definitions

from the file hw0.rkt

Practice & Function Design

A “complete” program

12

(define sum-positives

(lambda (lst)

(cond [(empty? lst) 0]

[(> (first lst) 0)

(+ (first lst) (sum-positives (rest lst)))]

[else (sum-positives (rest lst))])))

A “complete” program

13

(define sum-positives

(lambda (lst)

(cond [(empty? lst) 0]

[(> (first lst) 0)

(+ (first lst) (sum-positives (rest lst)))]

[else (sum-positives (rest lst))])))

This reflects a common pattern: recursion over lists

(classic in Racket, all the time!)

List functions empty?, first, rest

Base case 0
Recursive calls using the rest of the list, combined with the first

element

(define multiply

(lambda (n m)

(cond [(equal? m 0) 0]

[else])))

A.(+ n (multiply n m)

B.(* n (multiply n (- m 1)))

C.(+ n (multiply n (- m 1)))

D.Something else

(multiply 2 3) gives 6

(multiply 4 10) gives 40

What should go in the ?

We want to write a produce swap which swaps only the first

and second elements of a list. Write swap together with your

group!

Tests:
(swap ‘(a b c d)) produces ‘(b a c d)

(swap ‘(1 2)) produces ‘(2 1)

We want to write a procedure small-enough which takes a

list of strings and returns #t when all the strings are less

than or equal to 5 characters and #f otherwise.

This is going to be a Parson’s Problem. I’ll give you the
code in pieces of paper and your job will be to assemble it.

Next Up

HW0 due at 11:59pm Friday

Opportunities for help:

• My office hours 1–3 p.m. tomorrow in King 2231

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Questions? Concerns?
	Slide 3: Goals for Today’s Class
	Slide 4: Functional Language of the Week: OCaml
	Slide 5: Functional Language of the Week: OCaml
	Slide 6: Modules in Racket
	Slide 7: Modules in Racket
	Slide 8: Exposing definitions
	Slide 9: Exposing only some definitions
	Slide 10: Importing definitions from modules
	Slide 11: Practice & Function Design
	Slide 12: A “complete” program
	Slide 13: A “complete” program
	Slide 16: (define multiply (lambda (n m) (cond [(equal? m 0) 0] [else])))
	Slide 17: We want to write a produce swap which swaps only the first and second elements of a list. Write swap together with your group! Tests: (swap ‘(a b c d)) produces ‘(b a c d) (swap ‘(1 2)) produces ‘(2 1)
	Slide 19: We want to write a procedure small-enough which takes a list of strings and returns #t when all the strings are less than or equal to 5 characters and #f otherwise. This is going to be a Parson’s Problem. I’ll give you the code in pieces of
	Slide 29: Next Up

