
CSCI 275:
Programming Abstractions
Lecture 04: Testing, Style & Modules

Fall 2024

Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

Goals for Today’s Class

We’ll have the basic tools to be able to write Racket programs.

Today:

How can we write them well and test them effectively?

List/Pair Wrap Up

Lists

Lists are the most important data type in Racket

A list is one of two things:
• The empty list (empty, null and ‘() produce the empty list)

• A pair (x . y) where x is an expression and y is a list

We can create a list with (list 3 (+ 8 5) #f) which gives

‘(3 13 #f)

Two (Deeper) Questions

1. While we can construct lists with list, they print out with a quotation

mark. Why?

2. We said that lists were pairs (x . y) where x is an expression and y

is a list. What is a pair?

Quoting in Racket

Placing a ' before an s-expression "quotes" it

- The quoted expression is treated as data, not code

- DrRacket displays lists with the quote

'(1 4 5) is a 3-element list

We saw (list (* 2 3) (and #t #f) 8) produces

'(6 #f 8)

'((* 2 3) (and #t #f) 8) produces

'((* 2 3) (and #t #f) 8)

10

Quoting in Racket

Placing a ' before an s-expression "quotes" it

- The quoted expression is treated as data, not code

- DrRacket displays lists with the quote

'(1 4 5) is a 3-element list

We saw (list (* 2 3) (and #t #f) 8) produces

'(6 #f 8)

'((* 2 3) (and #t #f) 8) produces

'((* 2 3) (and #t #f) 8)

11

Quoting, in general, is how we represent data

Quoting a number, boolean, or string returns that number, boolean, or string
- '35 gives 35

- '#t gives #t

- '"Hello!" gives "Hello!"

Quoting a variable gives a symbol
- + and string-append are variables whose values are procedures

- '+ and 'string-append are symbols

Quoting a list gives a list of quoted elements
- '(1 2 x y) is the same as (list '1 '2 'x 'y)

- '(() (1) (1 2 3)) is the same as (list '() '(1) '(1 2 3))

12

Guidelines for creating lists

If you want to evaluate some expressions and have the resulting
values be in the list, use (list expr1 expr2 ... exprn)

If you want to create a list of literal numbers/strings/booleans/symbols,
use '(...)

13

Example: (list x (list x y z) z)

Example: '(10 15 20 -3)

Given variables x and y, how do we create a list containing the

values of x, y, and x + y?

i.e., if x is 10 and y is 15, the list we want is '(10 15 25).

A. (list x y (+ x y))

B. (list 'x 'y (+ 'x 'y))

C. (list 'x 'y '(+ x y))

D. '(x y (+ x y))

E. All of the above

14

Two (Deeper) Questions

1. While we can construct lists with list, they print out with a quotation

mark. Why?

2. We said that lists were pairs (x . y) where x is an expression and y

is a list. What is a pair?

Pair are the (traditional) data structure in Scheme

Pairs hold data. To create a pair you use the cons procedure, which

takes two arguments: (cons a b)

Top Tip: If you evaluate a term and it prints with a . in the middle (i.e.

’(2 . 3)) that is a pair not a list

cons means “create a pair”

-(cons 'x 'y) creates the pair '(x . y)

-(cons 2 3) creates the pair '(2 . 3)

-(cons 5 null) creates the list '(5)

Lists are simply (useful) special cases of pairs –

All operators for pairs also work with lists, but not vice versa

cons helps us build up lists, one-by-one
If we have a list lst and an element x, prepend x to lst: (cons x

lst)

(cons "c" (list "a" "b")) => '("c" "a" "b")

This works because the second argument to cons is a list so the

result is a list

What if we want to append x to lst? Can we use (cons lst x)?

Will (cons '(1 2 3) 4) produce '(1 2 3 4)?
1

7

A.Yes

B.No

Cons cells

(cons x y) creates a cons-cell

(cons 1 (cons 2 (cons 3 null))) produces

You'll notice that this is a linked list!

This is the same list that's produced by (list 1 2 3)

1

8

x y

21 3 null

Lists are either null or pairs whose second element is a list.

We can create a pair using (cons x y). How can we use

cons to create the 3-element list ‘(#t #f 29)?

A.(cons #t (cons #f (cons 89 null)))

B.(cons (cons (cons (#t #f) 89 null)

C.(cons #t (cons #f 89))

D.(cons (cons #t #f) 89)

E. More than one of the above (which?)

1

9

Get the first element from a pair

car (Contents of the Address part of a Register*)

Returns the first element of a pair (or the head of a list)

(car (cons 5 8)) (equivalently (car '(5 . 8))) returns

5

(car '(1 2 3 4)) returns 1

(car (1 2 3 4)) is an error because (1 2 3 4) is invalid

2

2 * This terminology comes from the IBM 704, an ancient computer

Get the second element of the pair

cdr (Contents of the Decrement part of a Register*)

Returns the second element of a pair (or the tail of a list);

pronounced "could-er"

(cdr (cons 5 8)) (equivalently (cdr '(5 . 8))) returns

8
(cdr '(1 2 3 4)) returns the list '(2 3 4)

(cdr '(5)) returns the empty list, DrRacket will display '()

23 * This terminology comes from the IBM 704, an ancient computer

Note: cdr is equivalent to rest, not

second in Racket terminology

Recap
To create a list with a fixed number of elements: (list x1 x2 … xn)

x1 … xn are arbitrary s-expressions that will be evaluated and their values

put in a list

To create a list with a fixed number of literal values: '(a b 5 3 (2 3) #f)

To add an element x to the beginning of an existing list lst: (cons x lst)

This returns a new list! It doesn't modify anything

To get the first element of the list: (first lst)

To get the rest of the list (i.e., not the first element): (rest lst)

25

(define fun

(lambda (lst1 lst2)

(cond [(empty? lst1) lst2]

[else (cons (first lst1)

(fun (rest lst1) lst2))])))

What is the result of (fun '(1 2 3 4) '(a b c))?

A.'(1 2 3 4 a b c)

B.'(4 3 2 1 a b c)

C.'(1 2 3 4 c b a)

D.'(4 3 2 1 c b a)

E.'(a b c)

About Testing

In this class, you’ll be required to write test suites for each

piece of Racket code you write.

Why do you think that’s an expectation of this class?

2

8

Some Reasons to Test
• I can write tests once, and test my implementation as I go along as

many times as I want

• This helps me be a more efficient programmer

• Writing tests helps me design my solutions

• I can identify edge cases before I start programming

• I can immediately decide if my first attempt makes sense

• At-scale software in the real world is very complex

• Testing is an important point of maintaining software quality in the

real world

Relevant Quotes from Software Engineering at
Google

“The ability for humans to manually validate every behavior in a

system has been unable to keep pace with the explosion of

features and platforms in most software.”

“In addition to empowering companies to build great products

quickly, testing is becoming critical to ensuring the safety of

important products and services in our lives.”

“Keep in mind that tests derive their value from the trust

engineers place in them.”

https://abseil.io/resources/swe-book
https://abseil.io/resources/swe-book

Related: Test Driven Development

• A software engineer philosophy

• Start with tests

• Develop according to their requirements

Kent Beck from “Test Driven Development: By Example”:
The two rules imply an order to the tasks of programming.

Red— Write a little test that doesn't work, and perhaps doesn't even

compile at first.

Green— Make the test work quickly, committing whatever sins

necessary in the process.

Refactor— Eliminate all of the duplication created in merely getting

the test to work.

Let’s think about some good tests

(remove-numbers lst) — Remove all of the numbers from lst

In your small groups, think about some example lists that would help

you (a) design this procedure and (b) test out a correct

implementation?

32

Tests are worth points too!

• Especially for the later problems in HW0/HW1, it can be really

useful to write tests first that explore what the problem is

trying to do

• You get points for tests even if your implementation does not

pass my tests

Aside: Print Debugging
This is less common and less easily supported in Racket than in other

languages – has to do with evaluation methods in Racket

It can be useful and there are numerous Racket procedures:

print, write, display

I recommend using println and displayln

Next Up

First Commit for HW0 due at 11:59pm Tonight

iClicker points count today onwards – talk to me if you’re running into

issues!

Opportunities for help:

• Elinor’s Office Hours tonight 8-9:30pm in King 225

• Ask on Ed! Screenshots of code are generally less helpful than

pasting code into your question

	Slide 2: CSCI 275: Programming Abstractions
	Slide 6: Goals for Today’s Class
	Slide 7: List/Pair Wrap Up
	Slide 8: Lists
	Slide 9: Two (Deeper) Questions
	Slide 10: Quoting in Racket
	Slide 11: Quoting in Racket
	Slide 12: Quoting, in general, is how we represent data
	Slide 13: Guidelines for creating lists
	Slide 14: Given variables x and y, how do we create a list containing the values of x, y, and x + y? i.e., if x is 10 and y is 15, the list we want is '(10 15 25).
	Slide 15: Two (Deeper) Questions
	Slide 16: Pair are the (traditional) data structure in Scheme
	Slide 17: cons helps us build up lists, one-by-one
	Slide 18: Cons cells
	Slide 19: Lists are either null or pairs whose second element is a list. We can create a pair using (cons x y). How can we use cons to create the 3-element list ‘(#t #f 29)?
	Slide 22: Get the first element from a pair
	Slide 23: Get the second element of the pair
	Slide 25: Recap
	Slide 26: (define fun (lambda (lst1 lst2) (cond [(empty? lst1) lst2] [else (cons (first lst1) (fun (rest lst1) lst2))]))) What is the result of (fun '(1 2 3 4) '(a b c))?
	Slide 27: About Testing
	Slide 28: In this class, you’ll be required to write test suites for each piece of Racket code you write. Why do you think that’s an expectation of this class?
	Slide 29: Some Reasons to Test
	Slide 30: Relevant Quotes from Software Engineering at Google
	Slide 31: Related: Test Driven Development
	Slide 32: Let’s think about some good tests
	Slide 33: Tests are worth points too!
	Slide 34: Aside: Print Debugging
	Slide 47: Next Up

