
Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

CSCI 275:
Programming Abstractions
Lecture 03: Basic Building Blocks

Fall 2024

Happy Friday!

Announcements

2

• Reminder: start HW0

Goals for Today

3

• Wrapping up procedures

• Introducing our core data type: lists

• How we construct them

• How we reference elements of them

• [If time] More practice combining everything together

Some questions

1. How can I get the cond to take an argument, rather than just

reference a “global” foo?

1. How do I “save” code like that above to be able to reuse it?

(i.e. a function!)

• How is/isn’t this related to using define to bind identifiers?

5

Creating procedures: lambda
Procedures are creating using the lambda special form

(lambda parameters body …)

parameters is an unevaluated list of identifiers which will be

bound to the values of the procedure's arguments when procedure

is called

body is a sequence of s-expressions that form the body of the

procedure, they're evaluated in turn (lambda (x y)

(/ (+ x y) 2))

(lambda (name)

(displayln "Hello ")

(displayln name))

Naming lambdas
Given we have a lambda, we can use it and call it

((lambda (x) (+ x 2)) 4)

This will evaluate to 6. However, this current structure doesn’t allow us

to reuse the lambda with a different input.

We already have a way to bind a value to an identifier (“name”): that’s
define.

We know define attaches a name to an evaluated value
(define x (+ 20 100)) means x is bound to 120

So what does a lambda evaluate to? Anything?

BIG IMPORTANT SLIDE

Unlike procedures in most languages, in Racket there is a notion that
lambdas are values & so can be evaluated

• lambdas are like numbers, strings, lists, etc.

• We can pass them around, return them, hold them as their own,

evaluated concept

• This is really not true in languages like C, for instance

• This makes procedures first-class in Racket

• Support for higher-order/first-class functions is one of the hallmarks of

a language that supports functional programming

Closures: what lambdas evaluate to

The expression of (lambda parameters body…) evaluates

to a closure consisting of

- The parameter list (a list of identifiers)

- The body as un-evaluated expressions (often just one

expression)

- The environment (the mapping of identifiers to values) at the

time the lambda expression is evaluated
9

We’ll return to this –

becomes important!

define + lambda = reusable procedures!
We can combine define and lambda, so that we can get a

named procedure!

(define add-two

(lambda (x)

(+ x 2)))

To call it, we then use prefix call notation, as usual:

(add-two 2) will give us 4

What have we learned thus far?

• How to call procedures

• Predicates

• if

• cond

• define

• lambda

• define & lambda together!

(define lily

(lambda (x y)

(string-append y x)))

(lily “hello” ”?”)

What does this code evaluate to?

A.Error

B.“hello?”

C.“?hello”

D.“hello ?”

E.Something else

(define alright

(lambda (a b)

(cond [(equal? a b) “equal”]

[(positive? a) 17]

[(and (positive? a) (negative? b)) 5]

[else “chaos!”])))

What does calling (alright 10 -30) evaluate to?

A.”chaos”

B.Error

C.5

D.17

E.”equal”

Can we use identifiers in lambdas? Sure!

Note: you won’t see for loops very often in this class – recursion

all the way

Computing factorial in Racket:

(define fact

(lambda (num)

(if (<= num 1)

1

(* num (fact (- num 1))))))

What have we learned thus far?

• How to call procedures

• Predicates

• if

• cond

• define

• lambda

• define & lambda together!

• Recursion

Lists as the core data structure

• Lists (Arrays) are a pretty core data structure in most languages

• They also are helpful for practicing more recursion!

• For historic, Scheme reasons, lists are fundamental to Racket

• This also means that there two ways to think about lists

• The “Racket” way

• The “Scheme” way

18

Lists

Lists are the most important data type in Racket

A list is one of two things:

• The empty list

• A pair (x . y) where x is an expression and y is a list

This is a recursive type definition: a type defined in terms of itself!

They are what we will use / interact with

/ explore the most because of this

We will see this idea again when we

talk about types!

Constructing Lists

There is a built-in procedure called list which helps us create lists

(list 1 3 5 2) produces the list '(1 3 5 2)

(list #t 5 "foo") produces the list '(#t 5 "foo")

(list (* 2 3) (and #t #f) 8) produces '(6 #f 8)

1.Note that lists in Racket can be heterogenous types

2.Note that with the list procedure, it evaluates the contents passed it!

The empty list

There are three ways to write the empty list, we can pretty much* use

them interchangeably.

• null

• empty

• '() — We'll see why this has a leading '

When working with lists, I recommend using empty

21

Accessing Elements of Lists: Racket

Racket helpfully gives us procedures which can access elements at specific indices

in the list

(first '(a b c)) => a

(rest '(a b c)) => '(b c)

(second '(a b c)) => b

(third '(a b c)) => c

fourth, fifth, sixth, seventh, eighth, ninth, tenth,

last, etc.

Note rest and second do not

return the same type: rest

returns a list, second returns

an element

What does this procedure do?

(define foo

(lambda (lst)

(cond [(empty? lst) #t]

[(zero? (first lst)) #f]

[else (foo (rest lst))])))

A. Returns #t if lst is empty and #f otherwise

B. Returns #t if lst contains a 0 and #f otherwise

C. Returns #f if lst contains a 0 and #t otherwise

D. Runs forever because foo is called on the rest of lst

Two (Deeper) Questions

1. While we can construct lists with list, they print out with a quotation

mark. Why?

1. We said that lists were pairs (x . y) where x is an expression and y

is a list. What is a pair?

Two (Deeper) Questions

1. While we can construct lists with list, they print out with a quotation

mark. Why?

1. We said that lists were pairs (x . y) where x is an expression and y

is a list. What is a pair?

Quoting in Racket

Placing a ' before an s-expression "quotes" it

- The quoted expression is treated as data, not code

- DrRacket displays lists with the quote

'(1 4 5) is a 3-element list

We saw (list (* 2 3) (and #t #f) 8) produces

'(6 #f 8)

'((* 2 3) (and #t #f) 8) produces

'((* 2 3) (and #t #f) 8)

26

Quoting in Racket

Placing a ' before an s-expression "quotes" it

- The quoted expression is treated as data, not code

- DrRacket displays lists with the quote

'(1 4 5) is a 3-element list

We saw (list (* 2 3) (and #t #f) 8) produces

'(6 #f 8)

'((* 2 3) (and #t #f) 8) produces

'((* 2 3) (and #t #f) 8)

27

Quoting, in general, is how we represent data

Quoting a number, boolean, or string returns that number, boolean, or string
- '35 gives 35

- '#t gives #t

- '"Hello!" gives "Hello!"

Quoting a variable gives a symbol
- + and string-append are variables whose values are procedures

- '+ and 'string-append are symbols

Quoting a list gives a list of quoted elements
- '(1 2 x y) is the same as (list '1 '2 'x 'y)

- '(() (1) (1 2 3)) is the same as (list '() '(1) '(1 2 3))

28

Guidelines for creating lists

If you want to evaluate some expressions and have the resulting
values be in the list, use (list expr1 expr2 ... exprn)

If you want to create a list of literal numbers/strings/booleans/symbols,
use '(...)

29

Example: (list x (list x y z) z)

Example: '(10 15 20 -3)

Given variables x and y, how do we create a list containing the

values of x, y, and x + y?

i.e., if x is 10 and y is 15, the list we want is '(10 15 25).

A. (list x y (+ x y))

B. (list 'x 'y (+ 'x 'y))

C. (list 'x 'y '(+ x y))

D. '(x y (+ x y))

E. All of the above

30

Two (Deeper) Questions

1. While we can construct lists with list, they print out with a quotation

mark. Why?

1. We said that lists were pairs (x . y) where x is an expression and y

is a list. What is a pair?

Pair are the (traditional) data structure in Scheme

Pairs hold data. To create a pair you use the cons procedure, which

takes two arguments: (cons a b)

Top Tip: If you evaluate a term and it prints with a . in the middle (i.e.

’(2 . 3)) that is a pair not a list

cons means ”create a pair"

-(cons 'x 'y) creates the pair '(x . y)

-(cons 2 3) creates the pair '(2 . 3)

-(cons 5 null) creates the list '(5)

Lists are simply (useful) special cases of pairs –

All operators for pairs also work with lists, but not vice versa

cons helps us build up lists, one-by-one
If we have a list lst and an element x, prepend x to lst: (cons x

lst)

(cons "c" (list "a" "b")) => '("c" "a" "b")

This works because the second argument to cons is a list so the

result is a list

What if we want to append x to lst? Can we use (cons lst x)?

Will (cons '(1 2 3) 4) produce '(1 2 3 4)?
3

3

A.Yes

B.No

Cons cells

(cons x y) creates a cons-cell

(cons 1 (cons 2 (cons 3 null))) produces

You'll notice that this is a linked list!

This is the same list that's produced by (list 1 2 3)

3

4

x y

21 3 null

Get the first element from a pair

car (Contents of the Address part of a Register*)

Returns the first element of a pair (or the head of a list)

(car (cons 5 8)) (equivalently (car '(5 . 8))) returns

5

(car '(1 2 3 4)) returns 1

(car (1 2 3 4)) is an error because (1 2 3 4) is invalid

3

8 * This terminology comes from the IBM 704, an ancient computer

Get the second element of the pair

cdr (Contents of the Decrement part of a Register*)

Returns the second element of a pair (or the tail of a list);

pronounced "could-er"

(cdr (cons 5 8)) (equivalently (cdr '(5 . 8))) returns

8
(cdr '(1 2 3 4)) returns the list '(2 3 4)

(cdr '(5)) returns the empty list, DrRacket will display '()

39 * This terminology comes from the IBM 704, an ancient computer

Note: cdr is equivalent to rest, not

second in Racket terminology

car returns the first element of a pair

cdr returns the second element of a pair

If lst is a list, how do we get the second element of lst?

E.g., if lst is '(2 3 5 7), the code should return 3
A.(car lst)

B.(cdr lst)

C.(car (cdr lst))

D.(cdr (car lst))

E.(cdr (cdr lst))
40

Next Up!

See the Schedule for Suggested Readings.

Starting Survey

Homework 0 is available

- Start now - normally a week per homework!

- First Commit due Monday at 11:59pm

- Due next Friday at 23:59

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Announcements
	Slide 3: Goals for Today
	Slide 5: Some questions
	Slide 6: Creating procedures: lambda
	Slide 7: Naming lambdas
	Slide 8: BIG IMPORTANT SLIDE
	Slide 9: Closures: what lambdas evaluate to
	Slide 10: define + lambda = reusable procedures!
	Slide 11: What have we learned thus far?
	Slide 12: (define lily (lambda (x y) (string-append y x))) (lily “hello” ”?”) What does this code evaluate to?
	Slide 13: (define alright (lambda (a b) (cond [(equal? a b) “equal”] [(positive? a) 17] [(and (positive? a) (negative? b)) 5] [else “chaos!”]))) What does calling (alright 10 -30) evaluate to?
	Slide 14: Can we use identifiers in lambdas? Sure!
	Slide 17: What have we learned thus far?
	Slide 18: Lists as the core data structure
	Slide 19: Lists
	Slide 20: Constructing Lists
	Slide 21: The empty list
	Slide 22: Accessing Elements of Lists: Racket
	Slide 23: What does this procedure do? (define foo (lambda (lst) (cond [(empty? lst) #t] [(zero? (first lst)) #f] [else (foo (rest lst))])))
	Slide 24: Two (Deeper) Questions
	Slide 25: Two (Deeper) Questions
	Slide 26: Quoting in Racket
	Slide 27: Quoting in Racket
	Slide 28: Quoting, in general, is how we represent data
	Slide 29: Guidelines for creating lists
	Slide 30: Given variables x and y, how do we create a list containing the values of x, y, and x + y? i.e., if x is 10 and y is 15, the list we want is '(10 15 25).
	Slide 31: Two (Deeper) Questions
	Slide 32: Pair are the (traditional) data structure in Scheme
	Slide 33: cons helps us build up lists, one-by-one
	Slide 34: Cons cells
	Slide 38: Get the first element from a pair
	Slide 39: Get the second element of the pair
	Slide 40: car returns the first element of a pair cdr returns the second element of a pair If lst is a list, how do we get the second element of lst? E.g., if lst is '(2 3 5 7), the code should return 3
	Slide 48: Next Up!

