
Stephen Checkoway, Oberlin College

Slides gratefully borrowed from Molly Q Feldman

CSCI 275:
Programming Abstractions
Lecture 02: Procedures & Choice

Fall 2024

Announcements

2

Ice cream social at 4:30 p.m. in the King/Rice courtyard TODAY

Functional Language of the Week: LISP

John McCarthy invented LISP at MIT around 1960 as a language for AI.

LISP grew quickly in both popularity and power. As the language grew more

powerful it required more and more of a system's resources. By 1980, 5

simultaneous LISP users would bring a moderately powerful PDP-11 to its

knees.

Guy Steele developed Scheme at MIT 1975-1980 as a minimalist alternative to

LISP.

Scheme is an elegant, efficient subset of LISP. It has some nice properties that

we will look at that allow it to be implemented efficiently.

3

Really!

We do this on Wednesdays!

Goals for Today

4

• Basics of Racket

• How do we make choice (i.e., conditionals, etc.)?

• How do we construct and use procedures?

Introducing Racket

When we talk about code/Racket in this class, I will do my

best to use Font in This Text to differentiate

what is description and what is code

Why Racket for CS 275?

All LISP-type languages have lists as the main data structure

• Programs are lists

• Data are lists

• Racket programs can reason about other programs. This makes Racket

useful for thinking about programming languages in general.

Racket is a different programming paradigm

• Python, Java, C and other languages are imperative languages. Programs in

these languages do their work by changing data stored in variables

• Racket programs can be written as functional programs—they compute by

evaluating functions and avoid variable assignments.

6

Why Racket for CS 275?

Racket is very elegant. It is much less verbose than Java, for instance, which

means it is easier to see what is happening in a Racket program.

I think its fun.

It lets you learn functional programming without a lot of extra features.

7

Racket Basics

We are used to basic values in most languages.

- Numbers (Integers & Floats)

- Strings

- Booleans

8

We are also accustomed to procedures/functions

which act on elements of these types

These also can look different depending on the language!

‘banana’ is invalid Java, but valid Python

Arithmetic/logical/string operations

3 + 5 (+ 3 5)

x • (4 + y + z) (* x (+ 4 y z))

x AND y (and x y)

x OR y OR z (or x y z)

"hello" + " " + "world"(string-append "hello" " " "world")

Language Design Statement: you know the semantics of these terms,

even if this syntax is not that of a language you’ve learned before

Everything is prefix in Racket

10

Language Design Statement:

The order that a language has the operators and operands is

arbitrary.

In Racket, you put the operator or function call *first*

(prefix form)

(< x 2) instead of x < 2

Equivalent operations in Racket

3 + 5 (+ 3 5)

x • (4 + y + z) (* x (+ 4 y z))

x AND y (and x y)

x OR y OR z (or x y z)

"hello" + " " + "world"(string-append "hello" " " "world")

11

Language Design Statement: you know the semantics of these terms,

even if this syntax is not that of a language you’ve learned before

In most languages, we would compute the arithmetic

mean (average) of two numbers (or variables holding
numbers) as (x + y) / 2. How do we do this in

Racket?

A.(x + y) / 2

B.((x + y) / 2)

C.(+ x y / 2)

D.(+ (/ x y) 2)

E.(/ (+ x y) 2)

What do you think these examples will evaluate to?

(+ 5 2)

(zero? x)

(or (and #t #f) (and #t #t))

(+ (- 1 0) (- 2 3))

What do you think these examples will evaluate to?

(+ 5 2)

(zero? x)

(or (and #t #f) (and #t #t))

(+ (- 1 0) (- 2 3))

7

Depends on x

#t

0

Procedures in Racket

All the examples we saw on the previous example - e.g.
(zero? X) and (+ (- 1 0) (- 2 3)) – are calls to

procedures.

In general, the structure of a procedure call in Racket is:
(name-of-procedure arg1 arg2 … argn)

The parentheses here are the call to name-of-procedure

The arguments are given in a row, separated with spaces, after

the procedure name

16

Procedures are a special case of Racket Forms

When presented with a sequence(foo arg1 arg2 …) Racket looks at the

first element of the sequence (here, foo)

If foo is a special form, Racket follows special instructions (define, and,

etc.)

If foo is a procedure (built-in or made by you), it applies that procedure to

the arguments and returns the result

Otherwise, error!

(1 2 3) is an error because 1 is not special form or procedure

This is the most common

error in the first couple

weeks of class!

Special Form: define

(define id s-exp)

The define special form binds an identifier to a value

This modifies the environment, the mapping of identifiers to values

(define hi “Hello”)

(define professors '("Adam" "Steve" "Cynthia"))

(third professors) => "Cynthia"

(define x (+ 20 100))

Whatever is in s-exp evaluates, so x is bound to 120

Giving names to expressions – useful!

However, these are not variables.

Predicates

Racket has a bunch of procedures that return #t if its argument

satisfies some property

(zero? x) returns #t if x is equal to 0

(empty? x) returns #t if x is the empty list

(positive? X) return #t if x is a positive number

(number? x) returns #t if x is a number

19

Style: predicates in Racket will always have ? as

the last character (they are asking a question!)

Tests for equality

Most of the time: Use equal?

(equal? a b) compares structures recursively

Are you dealing with numbers? Use =

(= a b) compares only numbers, cannot be used for anything else

eq?/eqv? are about referring to the same object in memory;

sometimes useful when you care about literal equality
20

If expression
(if test-exp then-exp else-exp)

If test-exp evaluates to anything other than #f, then the whole

expression evaluates to the evaluation of then-exp

If test-exp evaluates to #f, then the whole if expression

evaluates to the evaluation of else-exp

(if (= x y)

(+ x 2)

y)

(if (empty? lst)

"The list is empty"

"The list is not empty")

Conditional expressions
(cond [test-exp1 exp1] … [test-expn expn])

Evaluates the test-exp expressions in turn

The first one that evaluates to something other than #f has its

corresponding exp evaluated - this becomes the value of the

whole expression

We can (and should!) use else as the last test expression

(cond [(zero? x) 0]

[(> x 0) 1]

[else -1])
22

If your program is more than just a

very simple if statement, use
cond. It’s good style.

(define foo 12)

(cond [(< foo 2) #t]

[(>= foo 10) #f]

[(not (zero? foo)) #t]

[else (error “there is a problem!”)])

What does this code evaluate to?

A.#t

B.#f

C.#t or #f, depends on the run

D.Error

E.Something else

Some questions

1. How can I get the cond to take an argument, rather than just

reference a “global” foo?

1. How do I “save” code like that above to be able to reuse it?

(i.e. a function!)

• How is/isn’t this related to using define to bind identifiers?

24

Creating procedures: lambda
Procedures are creating using the lambda special form

(lambda parameters body …)

parameters is an unevaluated list of identifiers which will be

bound to the values of the procedure's arguments when procedure

is called

body is a sequence of s-expressions that form the body of the

procedure, they're evaluated in turn (lambda (x y)

(/ (+ x y) 2))

(lambda (name)

(displayln "Hello ")

(displayln name))

Naming lambdas
Given we have a lambda, we can use it and call it

((lambda (x) (+ x 2)) 4)

This will evaluate to 6. However, this current structure doesn’t allow us

to reuse the lambda with a different input.

We already have a way to bind a value to an identifier (“name”): that’s
define.

We know define attaches a name to an evaluated value
(define x (+ 20 100)) means x is bound to 120

So what does a lambda evaluate to? Anything?

BIG IMPORTANT SLIDE

Unlike procedures in most languages, in Racket there is a notion that
lambdas are values & so can be evaluated

• lambdas are like numbers, strings, lists, etc.

• We can pass them around, return them, hold them as their own,

evaluated concept

• This is really not true in languages like C, for instance

• This makes procedures first-class in Racket

• Support for higher-order/first-class functions is one of the hallmarks of

a language that supports functional programming

Closures: what lambdas evaluate to

The expression of (lambda parameters body…) evaluates

to a closure consisting of

- The parameter list (a list of identifiers)

- The body as un-evaluated expressions (often just one

expression)

- The environment (the mapping of identifiers to values) at the

time the lambda expression is evaluated
28

We’ll return to this –

becomes important!

define + lambda = reusable procedures!
We can combine define and lambda, so that we can get a

named procedure!

(define add-two

(lambda (x)

(+ x 2)))

To call it, we then use prefix call notation, as usual:

(add-two 2) will give us 4

What have we learned thus far?

• How to call procedures

• Predicates

• if

• cond

• define

• lambda

• define & lambda together!

(define lily

(lambda (x y)

(string-append y x)))

(lily “hello” ”?”)

What does this code evaluate to?

A.Error

B.“hello?”

C.“?hello”

D.“hello ?”

E.Something else

(define alright

(lambda (a b)

(cond [(equal? a b) “equal”]

[(positive? a) 17]

[(and (positive? a) (negative? b)) 5]

[else “chaos!”])))

What does calling (alright 10 -30) evaluate to?

A.”chaos”

B.Error

C.5

D.17

E.”equal”

Can we use identifiers in lambdas? Sure!

Note: you won’t see for loops very often in this class – recursion

all the way

Computing factorial in Racket:

(define fact

(lambda (num)

(if (<= num 1)

1

(* num (fact (- num 1))))))

A Note on Readings
RPTFW is really a reference guide

• If something didn’t make sense in lecture? Great resource, this

textbook or the additional resources I link

• Honor Code: look it up there, not Google!

• If you want more detail about something? Readings!

• Especially Chapters 1 & 2 teach you about some great Racket

operators (hint: member, remove) that we don’t cover in class

• You’ll read about mutability (e.g., set!), for loops and some “useful”

Racket that is not functional style - refrain from using it if possible,

stick to what we learn in class!

• Readings/order of lecture not entirely in sync

Next Up!
See the Schedule for Suggested Readings.

Homework 0 is live

- If you’ve never used Git/Github locally, please start

ASAP

- Due Friday, September 13 at 23:59

Post on Ed with questions

	Slide 1: CSCI 275: Programming Abstractions
	Slide 2: Announcements
	Slide 3: Functional Language of the Week: LISP
	Slide 4: Goals for Today
	Slide 5: Introducing Racket
	Slide 6: Why Racket for CS 275?
	Slide 7: Why Racket for CS 275?
	Slide 8: Racket Basics
	Slide 9: Arithmetic/logical/string operations
	Slide 10: Everything is prefix in Racket
	Slide 11: Equivalent operations in Racket
	Slide 12: In most languages, we would compute the arithmetic mean (average) of two numbers (or variables holding numbers) as (x + y) / 2. How do we do this in Racket?
	Slide 14
	Slide 15
	Slide 16: Procedures in Racket
	Slide 17: Procedures are a special case of Racket Forms
	Slide 18: Special Form: define
	Slide 19: Predicates
	Slide 20: Tests for equality
	Slide 21: If expression
	Slide 22: Conditional expressions
	Slide 23: (define foo 12) (cond [(< foo 2) #t] [(>= foo 10) #f] [(not (zero? foo)) #t] [else (error “there is a problem!”)]) What does this code evaluate to?
	Slide 24: Some questions
	Slide 25: Creating procedures: lambda
	Slide 26: Naming lambdas
	Slide 27: BIG IMPORTANT SLIDE
	Slide 28: Closures: what lambdas evaluate to
	Slide 29: define + lambda = reusable procedures!
	Slide 30: What have we learned thus far?
	Slide 31: (define lily (lambda (x y) (string-append y x))) (lily “hello” ”?”) What does this code evaluate to?
	Slide 32: (define alright (lambda (a b) (cond [(equal? a b) “equal”] [(positive? a) 17] [(and (positive? a) (negative? b)) 5] [else “chaos!”]))) What does calling (alright 10 -30) evaluate to?
	Slide 33: Can we use identifiers in lambdas? Sure!
	Slide 36: A Note on Readings
	Slide 37: Next Up!

