
Stephen Checkoway

Programming Abstractions
Week 3-1: Map and Apply

Map: the simple case
(map proc lst)

map applies the procedure proc to every element in list lst

(map f '(1 2 3 4)) => (list (f 1) (f 2) (f 3) (f 4))

(map sub1 '(10 15 20)) => '(9 14 19)

(map (λ (x) (list x x)) '(a b c)) => '((a a) (b b) (c c))

(map first '((a 5) (b 6) (c 7))) => '(a b c)

What is the result of this?

(map rest '((a 5) (b 6) (c 7)))

A. '((5) (6) (7))

B. '(5 6 7)

C. '((b 6) (c 7))

D. '(5) '(6) '(7)

E. '(b c)

3

What is the result of this?

(map (λ (lst) (cons (first lst) lst))  
 '((1 2) (3 4)))

A. '(1 3)

B. '((1 1 2) (3 3 4))

C. '((1 (1 2)) (3 (3 4)))

D. '((1 4) (2 3))

E. '((1 3) (2 4))

4

Using map to extract structured information

Imagine you had some data for penguins structured as a list of records and

each record is a list:  

(species island mass sex year)

E.g., 

(define penguins  

 '((Adelie Torgersen 2750 male 2007)  
 (Gentoo Biscoe 4400 female 2008)  
 …))

We can get a list of masses of the penguins via map  

(map third penguins) => '(2750 4400 …)

Get the average mass of Gentoo penguins
(species island mass sex year)

We can get a list of Gentoo penguins via filter

We can get the masses via map

(define average-gentoo-mass

 (let* ([gentoos

 (filter (λ (p) (eq? (first p) 'Gentoo)) penguins)]

 [masses (map third gentoos)])

 (/ (sum masses) (length gentoos))))

Do we have to write sum again?

We know that + takes any number of arguments, e.g., (+ 1 5 3 -8 20)

We have a list of masses

It'd be nice to tell Racket, "use this list as the arguments to +"

Applying a procedure to a list of arguments
(apply proc lst)

Applies proc to the arguments in lst

(define (maximum lst)  
 (apply max lst))  

(maximum '(1 3 4 2)) => (apply max '(1 3 4 2))  
 => (max 1 3 4 2)  
 => 4

(define (sum lst)  
 (apply + lst))  
(sum '(1 2 3)) => (apply + '(1 2 3)) => (+ 1 2 3) => 6

Returning to our penguins

(define average-gentoo-mass

 (let* ([gentoos

 (filter (λ (p) (eq? (first p) 'Gentoo)) penguins)]

 [masses (map third gentoos)]

 [total-mass (apply + masses)]

 [num-gentoos (length gentoos)])

 (/ total-mass num-gentoos)))

Applying with some fixed arguments
(apply proc v… lst)

apply takes a variable number of arguments where the final one is a list and

applies proc to all of those arguments

(apply proc 1 2 3 '(4 5 6)) => (proc 1 2 3 4 5 6)

Recap

If you have a list of data and you want to apply a procedure to each element of

the list, use map

(map f '(1 2 3)) => (list (f 1) (f 2) (f 3))

If you have a procedure and a list of data and you want to call the procedure

with the data in the list as the arguments, use apply

(apply f '(1 2 3) => (f 1 2 3)

If lst is a list of integers and you want to get a list with all of the integers

doubled (i.e., '(1 2 3) -> '(2 4 6)), which should you use?

A. (* 2 lst)

B. (apply (λ (x) (* 2 x)) lst)

C. (map (λ (x) (* 2 x)) lst)

D. (apply * 2 lst)

E. (map * 2 lst)

12

If foo is a procedure that takes a variable number of arguments and lst is a

list of arguments you want to pass to foo, how do you do it?  

E.g., if lst is '(a b c), you want to call (foo 'a 'b 'c).

A. (map foo lst)

B. (apply foo lst)

C. (map (λ (x) (apply foo x)) lst)

D. (apply (λ (x) (map foo x)) lst)

E. This is not possible

13

Distance of a 2-d point from the origin

Recall that a point lies from the origin

Let's make a procedure to compute this  

(define (distance-from-origin x y)  
 (sqrt (+ (* x x) (* y y))))

(distance-from-origin 3 4) => 5

(x, y) x
2 + y

2

Distance of a 2-d point from the origin

(define (distance-from-origin x y)  
 (sqrt (+ (* x x) (* y y))))

If we have a point 

(define p '(5 -8))  

how can we get its distance from the origin? We can't use  

(distance-from-origin p)

We can use apply  
(apply distance-from-origin p)

Of course, we could also do 
(distance-from-origin (first p) (second p))

Using map and apply together

Let's sum up all numbers in a structured (i.e., non-flat) list

(define (sum-all x)  
 (cond [(number? x) x]  
 [(list? x) (apply + (map sum-all x))]  
 [else  
 (error 'sum-all  
 "~v isn't a number or list"  
 x)]))

(sum-all '(1 2 (3 4 (5) () 6) 8)) => 29  
(sum-all '(1 2 (x))) => sum-all: 'x isn't a number or list

How would we implement map?

Non-tail-recursive

‣ Simple, clear

Tail-recursive

‣ Use an accumulator to hold the reversed results, then reverse

General map
(map proc lst1 lst2 … lstn)

If proc is a procedure of n arguments, then map will apply proc to corresponding

elements n lists (which all have the same length)

(map f '(a b c) '(1 2 3)) => (list (f 'a 1) (f 'b 2) (f 'c 3))

(map cons '(a b c) '(x y z)) => '((a . x) (b . y) (c . z))

(map list '(a b) '(c d) '(e f)) => '((a c e) (b d f))

(map * '(0 1 2) '(3 4 5) '(6 7 8)) => '(0 28 80)

How would we implement the general map?

Two issues

‣ How do we write a procedure that takes a variable number of arguments?

‣ How do we apply a procedure to a variable number of arguments?

- This one we know! Use apply

Variable argument procedure
(define foo (λ params body))

When params is a list of identifiers, the identifiers are bound to the values of

the procedure's arguments

When params is an identifier (i.e., not a list), then the identifier is bound to a list

of the procedure's arguments

(define count-args  
 (λ params  
 (length params)))

(define list  
 (λ elements elements))

(count-args 'a 2 #f) => 3

Required parameters + variable parameters
(define foo (λ (x y z . params)) body)

Separate the required parameters from the list of variable parameters with a

period

(define drop-2  
 (λ (x y . lst) lst))

(drop-2 1 2 3 4)

‣ x is bound to 1

‣ y is bound to 2

‣ lst is bound to '(3 4)

Variable argument procedure with define
(define (foo . params) body)

(define (count-args . args)  
 (length args))

With some required parameters  

(define (drop-2 x y . others)  
 others)

How would you write a variable-argument procedure that maps its first argument

f over each of its other arguments and returns the result as a list? E.g., 

(map-over add1 1 3 5 7) -> '(2 4 6 8)

A. (define (map-over f lst)  
 (map f lst))

B. (define (map-over f lst)  
 (apply f lst))

C. (define (map-over f . lst)  
 (map f lst))

D. (define (map-over f . lst)  
 (apply f lst))

23

Thinking through the general map
(map proc lst1 lst2 … lstn)

We can use a variable-argument procedure definition for map 

(define (map proc . lsts) …)

Now lsts is the list (list lst1 lst2 … lstn)

At each step of map, we need to compute  
(proc (first lst1) (first lst2) … (first lstn))

The problem is we don't have a fixed number of lists, we just have a list of lists

Solution: write a procedure map1 that just works with a single list 
(apply proc (map1 first lsts))

gives a list containing the first element of each list

General map implementation
Give this a try on your own!

Hints

‣ Define a helper function (map1 f lst) that applies a single-argument

procedure f to the elements of lst

‣ Write (define (map proc . lsts) …)

- Use map1 to get the heads and tails of elements in lsts

- Use apply to apply proc to the heads and cons the result onto an

appropriate recursive call of map

(define (map1 f lst) …)  

(define (map proc . lsts)  
 … (apply proc heads) …)

Now try making map1 and map tail-recursive!

