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The proof of the main theorem below is greatly simplified by the introduction
of new notation.

Definition. For a DFA M = (Q,Σ, δ, q0, F ) is a DFA, define the function
δ∗ : Q× Σ∗ → Q by

δ∗(q, ε) = q

δ∗(q, aw) = δ∗
(
δ(q, a), w

)
for a ∈ Σ, w ∈ Σ∗.

In essence, starting from state q, when M reads the string w, it ends up in
state δ∗(q, w). Note that w ∈ L(M) if and only if δ∗(q0, w) ∈ F .

Theorem. The intersection of a context-free language L1 and a regular lan-
guage L2 is context-free.

For any CFG G = (V,Σ, R, S) in Chomsky normal form (CNF) that does
not generate ε and a DFA M = (Q,Σ, δ, q0, {qf}) that has exactly one accept
state, we can construct a new CFG G′ = (V ′,Σ, R′, S′), also in CNF where

V ′ = {〈q, A, r〉 | A ∈ V and q, r ∈ Q}, (1)

S′ = 〈q0, S, qf 〉, (2)

R′ = {〈q, A, r〉 → t |A→ t ∈ R, t ∈ Σ, and δ(q, t) = r} ∪ (3)

{〈q, A, r〉 → 〈q,B, s〉〈s, C, r〉 | A→ BC ∈ R and q, r, s ∈ Q}. (4)

The new grammar G′ is clearly in CNF since each rule is either 〈variable〉 →
〈terminal〉 from (3) or 〈variable〉 → 〈variable〉〈variable〉 from (4).

The intuition behind these variables is that 〈q, A, r〉 generates the strings w
that are generated by A in G such that when M reads w starting from state q,
it ends in state r. We make that more precise and prove that it is true with the
following lemma.

Lemma. For each 〈q, A, r〉 ∈ V ′, 〈q, A, r〉 ∗⇒ w iff A
∗⇒ w and δ∗(q, w) = r.

Proof. We can prove this by induction on the length of strings w. There are
two cases to consider.
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1. Base case: w = a for some a ∈ Σ. Since G′ is in CNF, the derivation of
a terminal happens in a single step. Thus, 〈q, A, r〉 ∗⇒ a iff 〈q, A, r〉 ⇒ a

iff A ⇒ a and δ(q, a) = r iff A
∗⇒ a and δ∗(q, a) = r. The last step is an

“iff” for the same reason the first is: G is in CNF.

2. Inductive case: |w| = n > 1. Deriving a string of length n > 0 from a
grammar in CNF takes 2n − 1 steps. Since n > 1, this first step must
yield two variables. Therefore, 〈q, A, r〉 ∗⇒ w iff

〈q, A, r〉 ⇒ 〈q,B, s〉〈s, C, r〉 ∗⇒ w for some s ∈ Q (5)

iff A⇒ BC.

Now we can apply the inductive hypothesis twice since each variable in
the middle of (5) must derive a string of length strictly smaller than n. In
particular, neither variable may derive ε because only the start variable
in a CNF grammar may derive the empty string and the start variable
may not appear in the right hand side of any rule. Thus, by the inductive
hypothesis, 〈q,B, s〉 ∗⇒ w1 and 〈s, C, r〉 ∗⇒ w2, iff B

∗⇒ w1, δ∗(q, w1) = s,

C
∗⇒ w2, and δ∗(s, w2) = r. Since w = w1w2,

δ∗(q, w) = δ∗
(
δ∗(q, w1), w2

)
= δ∗(s, w2)

= r.

Since A⇒ BC, A
∗⇒ w.

Putting this all together, we have 〈q,A, r〉 ∗⇒ w iff A
∗⇒ w and δ∗(q, w) =

r.

In particular, the strings generated by 〈q0, S, qf 〉 are precisely those strings
generated by S which are accepted by M . All that remains to prove the theorem
is to handle the cases where the DFA recognizing L2 has zero accept states (i.e.,
L2 = ∅), the DFA has more than 1 accept states, and where ε ∈ L1.

Proof. If L2 = ∅, then L1 ∩ L2 = ∅ which is context-free.
Assume L2 6= ∅. It is an easy fact to prove that any nonempty, regular lan-

guage is the union of finitely many regular languages each of which is recognized
by a DFA with a single state.1 Since context-free languages are closed under
union, it suffices to prove the theorem for the case where L2 is recognized by a
DFA with a single accept state.

Let G = (V,Σ, R, S) be a CFG in CNF which generates L1\{ε} and let M =
(Q,Σ, δ, q0, {qf}) be the DFA which recognizes L2. Construct the new CFG G′

according to the above construction. Now, w ∈ L(G′) iff 〈q0, S, qf 〉
∗⇒ w. By

1To see this, consider a DFA which recognizes the original language. This DFA has |F |
accept states. Construct |F | copies of the DFA, each of which has a single accept state. The
union of the language recognized by each of these machines is the original language.
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the lemma, this happens iff S
∗⇒ w and δ∗(q0, w) = qf . Hence w ∈ L(G′) iff

w ∈ L1 \ {ε} and w ∈ L2.
Finally, if ε ∈ L1 ∩ L2, then we can add the rule 〈q0, S, qf 〉 → ε to G′. If

we do this, G′ is still in CNF. In particular, 〈q0, S, qf 〉 never appears on the
right hand side of a rule so all the introduction of this rule does is add ε to the
language generated by G′. In either case, L(G′) = L1 ∩ L2.
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