
Context-free languages are closed under

intersection with regular languages

Stephen Checkoway

February 18, 2015

The proof of the main theorem below is greatly simplified by the introduction
of new notation.

Definition. For a DFA M = (Q,Σ, δ, q0, F) is a DFA, define the function
δ∗ : Q× Σ∗ → Q by

δ∗(q, ε) = q

δ∗(q, aw) = δ∗
(
δ(q, a), w

)
for a ∈ Σ, w ∈ Σ∗.

In essence, starting from state q, when M reads the string w, it ends up in
state δ∗(q, w). Note that w ∈ L(M) if and only if δ∗(q0, w) ∈ F .

Theorem. The intersection of a context-free language L1 and a regular lan-
guage L2 is context-free.

For any CFG G = (V,Σ, R, S) in Chomsky normal form (CNF) that does
not generate ε and a DFA M = (Q,Σ, δ, q0, {qf}) that has exactly one accept
state, we can construct a new CFG G′ = (V ′,Σ, R′, S′), also in CNF where

V ′ = {〈q, A, r〉 | A ∈ V and q, r ∈ Q}, (1)

S′ = 〈q0, S, qf 〉, (2)

R′ = {〈q, A, r〉 → t |A→ t ∈ R, t ∈ Σ, and δ(q, t) = r} ∪ (3)

{〈q, A, r〉 → 〈q,B, s〉〈s, C, r〉 | A→ BC ∈ R and q, r, s ∈ Q}. (4)

The new grammar G′ is clearly in CNF since each rule is either 〈variable〉 →
〈terminal〉 from (3) or 〈variable〉 → 〈variable〉〈variable〉 from (4).

The intuition behind these variables is that 〈q, A, r〉 generates the strings w
that are generated by A in G such that when M reads w starting from state q,
it ends in state r. We make that more precise and prove that it is true with the
following lemma.

Lemma. For each 〈q, A, r〉 ∈ V ′, 〈q, A, r〉 ∗⇒ w iff A
∗⇒ w and δ∗(q, w) = r.

Proof. We can prove this by induction on the length of strings w. There are
two cases to consider.

1

1. Base case: w = a for some a ∈ Σ. Since G′ is in CNF, the derivation of
a terminal happens in a single step. Thus, 〈q, A, r〉 ∗⇒ a iff 〈q, A, r〉 ⇒ a

iff A ⇒ a and δ(q, a) = r iff A
∗⇒ a and δ∗(q, a) = r. The last step is an

“iff” for the same reason the first is: G is in CNF.

2. Inductive case: |w| = n > 1. Deriving a string of length n > 0 from a
grammar in CNF takes 2n − 1 steps. Since n > 1, this first step must
yield two variables. Therefore, 〈q, A, r〉 ∗⇒ w iff

〈q, A, r〉 ⇒ 〈q,B, s〉〈s, C, r〉 ∗⇒ w for some s ∈ Q (5)

iff A⇒ BC.

Now we can apply the inductive hypothesis twice since each variable in
the middle of (5) must derive a string of length strictly smaller than n. In
particular, neither variable may derive ε because only the start variable
in a CNF grammar may derive the empty string and the start variable
may not appear in the right hand side of any rule. Thus, by the inductive
hypothesis, 〈q,B, s〉 ∗⇒ w1 and 〈s, C, r〉 ∗⇒ w2, iff B

∗⇒ w1, δ∗(q, w1) = s,

C
∗⇒ w2, and δ∗(s, w2) = r. Since w = w1w2,

δ∗(q, w) = δ∗
(
δ∗(q, w1), w2

)
= δ∗(s, w2)

= r.

Since A⇒ BC, A
∗⇒ w.

Putting this all together, we have 〈q,A, r〉 ∗⇒ w iff A
∗⇒ w and δ∗(q, w) =

r.

In particular, the strings generated by 〈q0, S, qf 〉 are precisely those strings
generated by S which are accepted by M . All that remains to prove the theorem
is to handle the cases where the DFA recognizing L2 has zero accept states (i.e.,
L2 = ∅), the DFA has more than 1 accept states, and where ε ∈ L1.

Proof. If L2 = ∅, then L1 ∩ L2 = ∅ which is context-free.
Assume L2 6= ∅. It is an easy fact to prove that any nonempty, regular lan-

guage is the union of finitely many regular languages each of which is recognized
by a DFA with a single state.1 Since context-free languages are closed under
union, it suffices to prove the theorem for the case where L2 is recognized by a
DFA with a single accept state.

Let G = (V,Σ, R, S) be a CFG in CNF which generates L1\{ε} and let M =
(Q,Σ, δ, q0, {qf}) be the DFA which recognizes L2. Construct the new CFG G′

according to the above construction. Now, w ∈ L(G′) iff 〈q0, S, qf 〉
∗⇒ w. By

1To see this, consider a DFA which recognizes the original language. This DFA has |F |
accept states. Construct |F | copies of the DFA, each of which has a single accept state. The
union of the language recognized by each of these machines is the original language.

2

the lemma, this happens iff S
∗⇒ w and δ∗(q0, w) = qf . Hence w ∈ L(G′) iff

w ∈ L1 \ {ε} and w ∈ L2.
Finally, if ε ∈ L1 ∩ L2, then we can add the rule 〈q0, S, qf 〉 → ε to G′. If

we do this, G′ is still in CNF. In particular, 〈q0, S, qf 〉 never appears on the
right hand side of a rule so all the introduction of this rule does is add ε to the
language generated by G′. In either case, L(G′) = L1 ∩ L2.

3

