Chapter 2 Application Layer

Network applications are the raisons d’étre of a computer network—if we couldn’t conceive of any useful
applications, there wouldn’t be any need for networking infrastructure and protocols to support them.

Since the Internet’s inception, numerous useful and entertaining applications have indeed been created.
These applications have been the driving force behind the Internet’s success, motivating people in
homes, schools, governments, and businesses to make the Internet an integral part of their daily

activities.

Internet applications include the classic text-based applications that became popular in the 1970s and
1980s: text e-mail, remote access to computers, file transfers, and newsgroups. They include the killer
application of the mid-1990s, the World Wide Web, encompassing Web surfing, search, and electronic
commerce. They include instant messaging and P2P file sharing, the two killer applications introduced
at the end of the millennium. In the new millennium, new and highly compelling applications continue to
emerge, including voice over IP and video conferencing such as Skype, Facetime, and Google
Hangouts; user generated video such as YouTube and movies on demand such as Netflix; multiplayer
online games such as Second Life and World of Warcraft. During this same period, we have seen the
emergence of a new generation of social networking applications—such as Facebook, Instagram,
Twitter, and WeChat—which have created engaging human networks on top of the Internet’s network or
routers and communication links. And most recently, along with the arrival of the smartphone, there has
been a profusion of location based mobile apps, including popular check-in, dating, and road-traffic
forecasting apps (such as Yelp, Tinder, Waz, and Yik Yak). Clearly, there has been no slowing down of
new and exciting Internet applications. Perhaps some of the readers of this text will create the next
generation of killer Internet applications!

In this chapter we study the conceptual and implementation aspects of network applications. We begin
by defining key application-layer concepts, including network services required by applications, clients
and servers, processes, and transport-layer interfaces. We examine several network applications in
detail, including the Web, e-mail, DNS, peer-to-peer (P2P) file distribution, and video streaming.
(Chapter 9 will further examine multimedia applications, including streaming video and VolP.) We then
cover network application development, over both TCP and UDP. In particular, we study the socket
interface and walk through some simple client-server applications in Python. We also provide several
fun and interesting socket programming assignments at the end of the chapter.

The application layer is a particularly good place to start our study of protocols. It’s familiar ground.
We’re acquainted with many of the applications that rely on the protocols we’ll study. It will give us a
good feel for what protocols are all about and will introduce us to many of the same issues that we’ll see
again when we study transport, network, and link layer protocols.

2.1 Principles of Network Applications

Suppose you have an idea for a new network application. Perhaps this application will be a great service
to humanity, or will please your professor, or will bring you great wealth, or will simply be fun to develop.
Whatever the motivation may be, let's now examine how you transform the idea into a real-world
network application.

At the core of network application development is writing programs that run on different end systems
and communicate with each other over the network. For example, in the Web application there are two
distinct programs that communicate with each other: the browser program running in the user’s host
(desktop, laptop, tablet, smartphone, and so on); and the Web server program running in the Web
server host. As another example, in a P2P file-sharing system there is a program in each host that
participates in the file-sharing community. In this case, the programs in the various hosts may be similar
or identical.

Thus, when developing your new application, you need to write software that will run on multiple end
systems. This software could be written, for example, in C, Java, or Python. Importantly, you do not
need to write software that runs on network-core devices, such as routers or link-layer switches. Even if
you wanted to write application software for these network-core devices, you wouldn’t be able to do so.

As we learned in Chapter 1, and as shown earlier in Figure 1.24, network-core devices do not function
at the application layer but instead function at lower layers—specifically at the network layer and below.

This basic design—namely, confining application software to the end systems—as shown in Figure 2.1,
has facilitated the rapid development and deployment of a vast array of network applications.

Mobile Network

Application

]

Application ‘__m
Transport _)'-' —
Network = ‘
Link _ | D
Physical

Enterprise Network

Transport
Network
Link
Physical
National or
Global ISP
. Local or
Regional ISP
-
<y X
N

k

Application

Transport

Network

Link

Physical

Figure 2.1 Communication for a network application takes place between end systems at the

application layer

2.1.1 Network Application Architectures

Before diving into software coding, you should have a broad architectural plan for your application. Keep
in mind that an application’s architecture is distinctly different from the network architecture (e.g., the
five-layer Internet architecture discussed in Chapter 1). From the application developer’s perspective,
the network architecture is fixed and provides a specific set of services to applications. The application
architecture, on the other hand, is designed by the application developer and dictates how the
application is structured over the various end systems. In choosing the application architecture, an
application developer will likely draw on one of the two predominant architectural paradigms used in
modern network applications: the client-server architecture or the peer-to-peer (P2P) architecture.

In a client-server architecture, there is an always-on host, called the server, which services requests

from many other hosts, called clients. A classic example is the Web application for which an always-on
Web server services requests from browsers running on client hosts. When a Web server receives a

request for an object from a client host, it responds by sending the requested object to the client host.
Note that with the client-server architecture, clients do not directly communicate with each other; for
example, in the Web application, two browsers do not directly communicate. Another characteristic of
the client-server architecture is that the server has a fixed, well-known address, called an IP address
(which we’ll discuss soon). Because the server has a fixed, well-known address, and because the server
is always on, a client can always contact the server by sending a packet to the server’s IP address.
Some of the better-known applications with a client-server architecture include the Web, FTP, Telnet,

and e-mail. The client-server architecture is shown in Figure 2.2(a).

Often in a client-server application, a single-server host is incapable of keeping up with all the requests
from clients. For example, a popular social-networking site can quickly become overwhelmed if it has
only one server handling all of its requests. For this reason, a data center, housing a large number of
hosts, is often used to create a powerful virtual server. The most popular Internet services—such as
search engines (e.g., Google, Bing, Baidu), Internet commerce (e.g., Amazon, eBay, Alibaba), Web-
based e-mail (e.g., Gmail and Yahoo Mail), social networking (e.g., Facebook, Instagram, Twitter, and
WeChat)—employ one or more data centers. As discussed in Section 1.3.3, Google has 30 to 50 data
centers distributed around the world, which collectively handle search, YouTube, Gmail, and other
services. A data center can have hundreds of thousands of servers, which must be powered and
maintained. Additionally, the service providers must pay recurring interconnection and bandwidth costs
for sending data from their data centers.

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in data centers. Instead
the application exploits direct communication between pairs of intermittently connected hosts, called

peers. The peers are not owned by the service provider, but are instead desktops and laptops controlled
by users, with most of the

a. Cllent-server archltecture b. Peer-to-peer architecture

Figure 2.2 (a) Client-server architecture; (b) P2P architecture

oﬂrg
_ I

Y,
S

we

D—CO—

b. Peer-to-peer architecture

peers residing in homes, universities, and offices. Because the peers communicate without passing
through a dedicated server, the architecture is called peer-to-peer. Many of today’s most popular and
traffic-intensive applications are based on P2P architectures. These applications include file sharing
(e.g., BitTorrent), peer-assisted download acceleration (e.g., Xunlei), and Internet telephony and video
conference (e.g., Skype). The P2P architecture is illustrated in Figure 2.2(b). We mention that some
applications have hybrid architectures, combining both client-server and P2P elements. For example, for
many instant messaging applications, servers are used to track the IP addresses of users, but user-to-
user messages are sent directly between user hosts (without passing through intermediate servers).

One of the most compelling features of P2P architectures is their self-scalability. For example, in a
P2P file-sharing application, although each peer generates workload by requesting files, each peer also
adds service capacity to the system by distributing files to other peers. P2P architectures are also cost
effective, since they normally don’t require significant server infrastructure and server bandwidth (in
contrast with clients-server designs with datacenters). However, P2P applications face challenges of
security, performance, and reliability due to their highly decentralized structure.

2.1.2 Processes Communicating

Before building your network application, you also need a basic understanding of how the programs,
running in multiple end systems, communicate with each other. In the jargon of operating systems, it is
not actually programs but processes that communicate. A process can be thought of as a program that
is running within an end system. When processes are running on the same end system, they can
communicate with each other with interprocess communication, using rules that are governed by the
end system’s operating system. But in this book we are not particularly interested in how processes in

the same host communicate, but instead in how processes running on different hosts (with potentially
different operating systems) communicate.

Processes on two different end systems communicate with each other by exchanging messages across
the computer network. A sending process creates and sends messages into the network; a receiving

process receives these messages and possibly responds by sending messages back. Figure 2.1
illustrates that processes communicating with each other reside in the application layer of the five-layer

protocol stack.

Client and Server Processes

A network application consists of pairs of processes that send messages to each other over a network.
For example, in the Web application a client browser process exchanges messages with a Web server

process. In a P2P file-sharing system, a file is transferred from a process in one peer to a process in
another peer. For each pair of communicating processes, we typically label one of the two processes as
the client and the other process as the server. With the Web, a browser is a client process and a Web
server is a server process. With P2P file sharing, the peer that is downloading the file is labeled as the
client, and the peer that is uploading the file is labeled as the server.

You may have observed that in some applications, such as in P2P file sharing, a process can be both a
client and a server. Indeed, a process in a P2P file-sharing system can both upload and download files.
Nevertheless, in the context of any given communication session between a pair of processes, we can
still label one process as the client and the other process as the server. We define the client and server
processes as follows:

In the context of a communication session between a pair of processes, the process that initiates the
communication (that is, initially contacts the other process at the beginning of the session) is labeled

as the client. The process that waits to be contacted to begin the session is the server.

In the Web, a browser process initializes contact with a Web server process; hence the browser process
is the client and the Web server process is the server. In P2P file sharing, when Peer A asks Peer B to
send a specific file, Peer A is the client and Peer B is the server in the context of this specific
communication session. When there’s no confusion, we’ll sometimes also use the terminology “client
side and server side of an application.” At the end of this chapter, we’ll step through simple code for both
the client and server sides of network applications.

The Interface Between the Process and the Computer Network

As noted above, most applications consist of pairs of communicating processes, with the two processes
in each pair sending messages to each other. Any message sent from one process to another must go
through the underlying network. A process sends messages into, and receives messages from, the
network through a software interface called a socket. Let’s consider an analogy to help us understand
processes and sockets. A process is analogous to a house and its socket is analogous to its door. When
a process wants to send a message to another process on another host, it shoves the message out its
door (socket). This sending process assumes that there is a transportation infrastructure on the other
side of its door that will transport the message to the door of the destination process. Once the message
arrives at the destination host, the message passes through the receiving process’s door (socket), and
the receiving process then acts on the message.

Figure 2.3 illustrates socket communication between two processes that communicate over the Internet.

(Figure 2.3 assumes that the underlying transport protocol used by the processes is the Internet's TCP
protocol.) As shown in this figure, a socket is the interface between the application layer and the

transport layer within a host. It is also referred to as the Application Programming Interface (API)

between the application and the network, since the socket is the programming interface with which
network applications are built. The application developer has control of everything on the application-
layer side of the socket but has little control of the transport-layer side of the socket. The only control
that the application developer has on the transport-layer side is (1) the choice of transport protocol and
(2) perhaps the ability to fix a few transport-layer parameters such as maximum buffer and maximum

segment sizes (to be covered in Chapter 3). Once the application developer chooses a transport
protocol (if a choice is available), the application is built using the transport-layer services provided by

that protocol. We'll explore sockets in some detail in Section 2.7.
Addressing Processes

In order to send postal mail to a particular destination, the destination needs to have an address.
Similarly, in order for a process running on one host to send packets to a process running on another
host, the receiving process needs to have an address.

Host or Host or
server server

A

 —

Controlled Controlled

by application Process Process by application
developer 4 4 developer

Socket Socket
Controlled TCP with TCP with T Controlled
by operating buffers, |« »| buffers, by operating
system variables INternet variables system

Figure 2.3 Application processes, sockets, and underlying transport protocol

To identify the receiving process, two pieces of information need to be specified: (1) the address of the

host and (2) an identifier that specifies the receiving process in the destination host.

In the Internet, the host is identified by its IP address. We’'ll discuss IP addresses in great detail in
Chapter 4. For now, all we need to know is that an IP address is a 32-bit quantity that we can think of as
uniquely identifying the host. In addition to knowing the address of the host to which a message is
destined, the sending process must also identify the receiving process (more specifically, the receiving
socket) running in the host. This information is needed because in general a host could be running many
network applications. A destination port number serves this purpose. Popular applications have been

assigned specific port numbers. For example, a Web server is identified by port number 80. A mail
server process (using the SMTP protocol) is identified by port number 25. A list of well-known port

numbers for all Internet standard protocols can be found at www.iana.org. We'll examine port numbers
in detail in Chapter 3.

2.1.3 Transport Services Available to Applications

Recall that a socket is the interface between the application process and the transport-layer protocol.
The application at the sending side pushes messages through the socket. At the other side of the
socket, the transport-layer protocol has the responsibility of getting the messages to the socket of the

receiving process.

Many networks, including the Internet, provide more than one transport-layer protocol. When you
develop an application, you must choose one of the available transport-layer protocols. How do you
make this choice? Most likely, you would study the services provided by the available transport-layer
protocols, and then pick the protocol with the services that best match your application’s needs. The
situation is similar to choosing either train or airplane transport for travel between two cities. You have to
choose one or the other, and each transportation mode offers different services. (For example, the train
offers downtown pickup and drop-off, whereas the plane offers shorter travel time.)

What are the services that a transport-layer protocol can offer to applications invoking it? We can
broadly classify the possible services along four dimensions: reliable data transfer, throughput, timing,
and security.

Reliable Data Transfer

As discussed in Chapter 1, packets can get lost within a computer network. For example, a packet can
overflow a buffer in a router, or can be discarded by a host or router after having some of its bits

corrupted. For many applications—such as electronic mail, file transfer, remote host access, Web
document transfers, and financial applications—data loss can have devastating consequences (in the
latter case, for either the bank or the customer!). Thus, to support these applications, something has to
be done to guarantee that the data sent by one end of the application is delivered correctly and
completely to the other end of the application. If a protocol provides such a guaranteed data delivery
service, it is said to provide reliable data transfer. One important service that a transport-layer protocol
can potentially provide to an application is process-to-process reliable data transfer. When a transport
protocol provides this service, the sending process can just pass its data into the socket and know with
complete confidence that the data will arrive without errors at the receiving process.

When a transport-layer protocol doesn’t provide reliable data transfer, some of the data sent by the

http://www.iana.org/

	Computer Networking: A Top-Down Approach, 7th Edition
	Content
	Chapter 1 Computer Networks and the Internet
	1.1 What Is the Internet?
	1.2 The Network Edge
	1.3 The Network Core
	1.4 Delay, Loss, and Throughput in Packet-Switched Networks
	1.5 Protocol Layers and Their Service Models
	1.6 Networks Under Attack
	1.7 History of Computer Networking and the Internet
	1.8 Summary
	Homework Problems and Questions
	Chapter 2 Application Layer
	2.1 Principles of Network Applications
	2.2 The Web and HTTP
	2.3 Electronic Mail in the Internet
	2.4 DNS—The Internet’s Directory Service
	2.5 Peer-to-Peer File Distribution
	2.6 Video Streaming and Content Distribution Networks
	2.7 Socket Programming: Creating Network Applications
	2.8 Summary
	Homework Problems and Questions
	Chapter 3 Transport Layer
	3.1 Introduction and Transport-Layer Services
	3.2 Multiplexing and Demultiplexing
	3.3 Connectionless Transport: UDP
	3.4 Principles of Reliable Data Transfer
	3.5 Connection-Oriented Transport: TCP
	3.6 Principles of Congestion Control
	3.7 TCP Congestion Control
	3.8 Summary
	Homework Problems and Questions
	Chapter 4 The Network Layer: Data Plane
	4.1 Overview of Network Layer
	4.2 What’s Inside a Router?
	4.3 The Internet Protocol (IP): IPv4, Addressing, IPv6, and More
	4.4 Generalized Forwarding and SDN
	4.5 Summary
	Homework Problems and Questions
	Chapter 5 The Network Layer: Control Plane
	5.1 Introduction
	5.2 Routing Algorithms
	5.3 Intra-AS Routing in the Internet: OSPF
	5.4 Routing Among the ISPs: BGP
	5.5 The SDN Control Plane
	5.6 ICMP: The Internet Control Message Protocol
	5.7 Network Management and SNMP
	5.7 Summary
	Homework Problems and Questions
	Chapter 6 The Link Layer and LANs
	6.1 Introduction to the Link Layer
	6.2 Error-Detection and -Correction Techniques
	6.3 Multiple Access Links and Protocols
	6.4 Switched Local Area Networks
	6.5 Link Virtualization: A Network as a Link Layer
	6.6 Data Center Networking
	6.7 Retrospective: A Day in the Life of a Web Page Request
	6.8 Summary
	Homework Problems and Questions
	Chapter 7 Wireless and Mobile Networks
	7.1 Introduction
	7.2 Wireless Links and Network Characteristics
	7.3 WiFi: 802.11 Wireless LANs
	7.4 Cellular Internet Access
	7.5 Mobility Management: Principles
	7.6 Mobile IP
	7.7 Managing Mobility in Cellular Networks
	7.8 Wireless and Mobility: Impact on ­Higher-Layer Protocols
	7.9 Summary
	Homework Problems and Questions
	Chapter 8 Security in Computer Networks
	8.1 What Is Network Security?
	8.2 Principles of Cryptography
	8.3 Message Integrity and Digital Signatures
	8.4 End-Point Authentication
	8.5 Securing E-Mail
	8.6 Securing TCP Connections: SSL
	8.7 Network-Layer Security: IPsec and Virtual Private Networks
	8.8 Securing Wireless LANs
	8.9 Operational Security: Firewalls and Intrusion Detection Systems
	8.10 Summary
	Homework Problems and Questions
	Chapter 9 Multimedia Networking
	9.1 Multimedia Networking Applications
	9.2 Streaming Stored Video
	9.3 Voice-over-IP
	9.4 Protocols for Real-Time Conversational Applications
	9.5 Network Support for Multimedia
	9.6 Summary
	Homework Problems and Questions
	References
	Index

