CS 241: Systems Programming
_ecture 30. Dynamic Libraries

Fall 2025
Prof. Stephen Checkoway

Announcements

- Monday’s lecture is a project work day

» Juesday’s lab is a project work day

» There is no scheduled class/lab. Please use the time to work on your final

projects.

Review - Static Libraries

Static libraries (or archives) are a way of bundling a collection of object files
together

The object files are linked together into a program at compile time

Today

Dynamic libraries
> Very commonly used in C, C++
> Rust can use dynamic libraries written in C, and produce dynamic
libraries that can be used by C programs

Dynamic libraries

Like static libraries, dynamic libraries start as a collection of object files (. o)

> When linking an executable against a static library, the program linker
copies the relevant library code/data into the output

Unlike static libraries, dynamic libraries are produced by the linker
> When linking an executable against a dynamic library, the program
linker inserts references to the library into the output, but does not
copy the library code/data into the output

At run time the dynamic linker (the loader) loads the executable and all of
its required libraries into memory

Static library

Static library

Static library

AN AN
library || ib
o files |—> —p- [11DCX.4

Static library

.\ k
library || .
.0 files ||—>—>
\\
||
.0 files

Static library

N N
library || ib
ofiles ||[~ —p| De%a
—l
\\
program ||
.0 files |

Static Iibrary

k\
orr "»
'
||
.0 files

Dynamic library

k\
library |]
.0 files |

Dynamic library

k\
library |]
.o files |—>

Dynamic library

AN AN
library || ib
o files |—> —p | 110CX-S0

Dynamic library

N N\
library || ib
o files |—> —p | 10EX-50
k\
program |
.0 files |_>

Dynamic library

\ AN
library | |
0 files —} — libex.so

| N\
program |]
.0 files |—> —» | prog

Dynamic library

\ 1\
library] |
.0 files |—>—> libex.so
A
i
i
i
i

Reference

Differences at runtime

Differences at runtime

Programs linked to static libraries
> Library code/data is part of the program
> Only the object files needed are included
> Code/data is placed at a known fixed address (or offset)
> Each such program has its own copy of the code/data

Differences at runtime

Programs linked to static libraries
> Library code/data is part of the program
> Only the object files needed are included
> Code/data is placed at a known fixed address (or offset)
> Each such program has its own copy of the code/data

Programs linked to dynamic libraries
> Library code/data is loaded into memory separately
> The whole library Is included, not just the needed bits
> Library code/data is loaded at a semi-arbitrary address
> Multiple programs can share a single copy of library code and read-only
data; they need their own copy of the writable data
> The program loader needs to perform more work at program start up

8

When a library is used by many applications (e.g., libc), which of the
following is not a benefit of using a dynamic library as compared to using a
static library?

A. Smaller memory usage for an individual application
B. Smaller total memory usage across multiple applications
C. Smaller total disk usage across multiple applications

D. Faster program linking

When a library is used by only one application, which of the following is not
a benefit of using a static library as compared to a dynamic library??

. Smaller memory usage for the application
. Smaller disk usage for the application

. Faster program startup

. Better program performance (it runs faster) separate from its start up
speed

. Bugs in the library can be fixed independently of the application

soname (ELF-based systems)

Each dynamic library has a soname (shared object name)

» lib{name).so.{(ABI version)

> ABI Iis application binary interface

> The soname specifies the name of the library and its ABI version

> Multiple versions of a library with a compatible ABI have the same
soname

> Versions of a library with incompatible ABIs (different functions or
parameters) have a different soname
e libc.so.5
e libc.so.6

11

soname Vvs. file name (Linux)

Example sonames
> zIlib (a compression library) has the soname 1libz.so.1
> libc's soname is 1ibc.so.6
» PCRE's library's soname is 1ibpcre.so. 3

On the file system the soname is a symbolic link to the actual library
> The file name is usually 1ib{name) .so.{major).{(minor).(patch)
> The major version number is often the ABI version
e libz.so.1l -> libz.so0.1.2.11
e libpcre.so.3 -> libpcre.so.3.13.3
e libc.so.6 =-> libc-2.27.so0 <- Nonstandard name!

12

One additional symbolic link

One additional symbolic link

For a given library foo, there are typically two symbolic links
» libfoo.so -> libfoo.s0.1.0.0
» libfoo.so.l -> libfoo.s0.1.0.0

13

One additional symbolic link

For a given library foo, there are typically two symbolic links
» libfoo.so -> libfoo.s0.1.0.0
» libfoo.so.l -> libfoo.s0.1.0.0

The first symbol link is used at link time, the second at run time

13

One additional symbolic link

For a given library foo, there are typically two symbolic links
» libfoo.so -> libfoo.so0.1.0.0
» libfoo.so.l -> libfoo.s0.1.0.0

The first symbol link is used at link time, the second at run time

The two need not be in the same directory
> /usr/1lib/x86 64-linux-gnu/libz.so ->
/1lib/x86 64-linux-gnu/libz.so.1.2.11
> /1lib/x86 64-1linux-gnu/libz.so.l -> libz.so.1.2.11
» /1ib/x86 64-linux-gnu/libz.so.1.2.11

13

Linking to a .so

We specity a library using a command line option: -1
» § clang -0 prog main.o -l1lblah

libblah.soisasymlinkto 1libblah.so.1.3.2 which has a soname of
libblah.so.1l

> The compiler records 1ibblah.so.1 in the output prog

At run time, the loader will look for 1ibblah.so.1 (which will be a symlink)
and follow that link to the actual library which could be 1ibblah.so.1.4.0

Wait, why might the library loaded at runtime, 1ibblah.so.1.4.0, be
different from that at compile time, 1ibblah.so.1.3.2? (hext slide)

14

Why might the library used at compile time differ from the library used at run
time? And is that a problem?

A. Vote for A when you’ve come up with one

B. Vote for B if you can’t think of a reason

Example: bash

We can see the library sonames recorded in a binary using the —-dynamic
(-d) option to readelf

mhogan@mcnulty:~$ readelf -d /bin/bash | grep NEEDED

0x0000000000000001
0x0000000000000001
0x0000000000000001

(N:
(N:

o
=

o
=

ﬂ-

(NE

]

L4

D.
D.
D]

7D)

2D)

5D)

16

Shared library:
Shared library:
Shared library:

[libtinfo.s0.6]
[libdl.so0.2]
[libc.so0.6]

Compiler search paths

When the compiler searches for files, it looks in a variety of paths
> Header files (for C or C++) come from the header search path

> Library files come from the library search path
> macOS has “Frameworks” which are like packaged libraries, headers,
and data; the compiler has a search path for Frameworks

We can add a directory to a specific search path via command line

arguments to the compiller
> The particular arguments depend on the types of files and on the

compiler

17

Runtime search paths

When the program starts, the dynamic linker looks at the sonames recorded
in the binary and looks for a file with a matching name (which is usually a
symlink) and loads that library

18

Actual library paths for bash

We can print the paths of the libraries that will be loaded

mhogan@mcnulty:~$ 1ldd /bin/bash
linux-vdso.so.l (0x00007£££295db000)
libtinfo.so0.6 => /1ib/x86 64-linux-gnu/libtinfo.so0.6 (0x00007fbbd50ee000)
libdl.so.2 => /1ib/x86 64-linux-gnu/libdl.so.2 (0x00007fbbd50e8000)
libc.so0.6 => /1ib/x86 64-linux-gnu/libc.so.6 (0x00007fbbd4ef6000)
/1ib64/1d-1inux-x86-64.s0.2 (0x00007£fbbd525£000)

linux-vdso.so.1 is a virtual dynamic library (see $ man 7 wvdso for details)
1d-1inux-x86-64.s0.2 is the actual dynamic linker (loads everything else into
memory)

19

