CS 241: Systems Programming
| ecture 28. Sockets Il

Fall 2025
Prof. Stephen Checkoway

lllll

A7) ; ‘
a2

L
e

¥ COMPUTER . ™
. NETWORKING

- A TOP-DOWN APP
- @ =

Slides adapted from the)
- Computer Networking: A
slides that accompany Top-Down Approach
this book % edition

Jim Kurose, Keith Ross
Pearson, 2020

Layered Internet Protocol Stack

Application: supporting network applications

> eg., HITP Application

Transport: data transfer between processes on hosts T
> e.g., TCP, UDP ransport

Network: routing packets from source to destination Network

> e.g., IP

Link

Link: data transfer between neighboring elements
> e.qg., Ethernet, WiFi

Physical

Physical: transmit data over wires (or wireless signals)

2

Communicating with the transport layer

The application needs to specity:
> The destination that will receive the data — IP address + port number
> What type of transport service It wants TCP or UDP
* Does it need security?
* Reliability? (e.g., no packets lost)

» The data that should be sent

The most common interface to the transport layer is
the socket interface

TCP vs UDP

TCP: Transmission Control
Protocol

TCP guarantees reliability

> All messages will get sent to the
application, in order

> |f a message gets lost, TCP will
retransmit the message until it's
received

TCP makes sure it doesn’t
overwhelm receiver by sending too
much, too quickly

TCP vs UDP

TCP: Transmission Control UDP: User Datagram Protocol
Protocol
UDP does NOT guarantee
TCP guarantees reliability reliability
> All messages will get sent to the > Messages may be lost or arrive
application, in order out-of-order
> If a message gets lost, TCP will
retransmit the message until it's Because UDP doesn’t have to
received worry about reliability, it is much
faster

TCP makes sure it doesn’t
overwhelm receiver by sending too
much, too quickly

For each of the following applications, choose whether you would use TCP
or UDP, and justify why you would choose it. [Select any letter on your
clicker]

* Online gaming

« SSH remote access
Email
Video conferencing

Whatsapp

Sockets

Sockets

Process sends/receives messages to/from its socket
> Not unlike communicating between threads!

Sockets

Process sends/receives messages to/from its socket
> Not unlike communicating between threads!

Sockets are like a door
» Sending process shoves message out the door
» Sender relies on transport infrastructure at receiver door to deliver the
message to socket at recelving process

Sockets

Process sends/receives messages to/from its socket
> Not unlike communicating between threads!

Sockets are like a door
» Sending process shoves message out the door
» Sender relies on transport infrastructure at receiver door to deliver the

message to socket at receiving process
icati Application Controlled by

Socket @ app developer

Transport
Network Controlled by
Link 05

Physical

Transport
Network

Link
Soume\! Physical

(client) o 6

| Destination
(server)

Socket Programming

Goal: build client/server applications that communicate using sockets

Two types of sockets
> TCP socket (stream)
> UDP socket (datagram)

Application Controlled by

Socket @ app developer

Transport
Network Controlled by
Link 05

Physical

Transport
Network

Link
50urce\! Physical

(client) <=~ 7

| Destination
(server)

Socket Programming

Two types of sockets
> TCP: reliable, byte stream-oriented
> UDP: unreliable datagram

Application example: [we’ll implement this!]
1. Client reads a line of characters (data) from its keyboard and sends data
L0 server
2. Server receives the data and converts the characters to uppercase
3. Server sends modified data to client
4. Client receives modified data and displays line on its screen

Socket Programming with UDP

UDP: no “connection” between client and server:
> No handshaking before sending data

Network Protocols

Network protocols are between

computers (devices) instead of
humans q
—— TCP connection .
request —, B=
A protocol defines: TCP connection — Bl
> the format and order of < response
messages send/received GEI'\lfc’qa://cs.oberlin.edu
between network entities S
> the actions taken upon __—<file>

message receipt time

10

http://cs.oberlin.edu

Socket Programming with UDP

Socket Programming with UDP

UDP: no “connection” between client and server:
> No handshaking before sending data
» Sender attaches |IP destination address and port # to each packet
> Receiver extracts sender |IP address and port # from received packet (so
it knows where to send response)

11

Socket Programming with UDP

UDP: no “connection” between client and server:
> No handshaking before sending data
» Sender attaches |IP destination address and port # to each packet
> Receiver extracts sender |IP address and port # from received packet (so
it knows where to send response)

UDP: transmitted data may be lost or received out-of-order

11

Socket Programming with UDP

UDP: no “connection” between client and server:
> No handshaking before sending data
» Sender attaches |IP destination address and port # to each packet
> Receiver extracts sender |IP address and port # from received packet (so
it knows where to send response)

UDP: transmitted data may be lost or received out-of-order
Application viewpoint:

> UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server processes

11

Client/server socket interaction: UDP

=8 server client

Client/server socket interaction: UDP

=1 server client o

create socket, port= x: create socket:

serverSocket = sockef...) clientSocket = socketf(...)

Client/server socket interaction: UDP

I server client q

create socket, port= x: create socket:

serverSocket = sockef...) clientSocket = socketf(...)

\4

Create datagram with serverlP address
/ And port=x; send datagram via

clientSocket

12

Client/server socket interaction: UDP

I server client q

create socket, port= x: create socket:

serverSocket = sockef...) clientSocket = socketf(...)

\4
\4

Create datagram with serverlP address
read datagram from / And port=x; send datagram via
serverSocket clientSocket

12

Client/server socket interaction: UDP

'I server client

create socket, port= x: create socket:
serverSocket = sockef...) clientSocket = socketf(...)
\/
Y Create datagram with serverlP address
read datagram from / And port=x; send datagram via
serverSocket clientSocket

|

write reply to serverSocket -
specifying client address, port .
number

12

Client/server socket interaction: UDP

lI server client

create socket, port= x: create socket:
serverSocket = socket(...) clientSocket = socket(...)
\/

Y Create datagram with serverlP address
read datagram from / And port=x; send datagram via
serverSocket clientSocket

write reply to serverSocket - ead dataaram from
specifying client address, port . cIientSocI?et
number |

close

clientSocket
12

Socket Programming with TCP

TCP: client MUST establish a connection with the server before sending data
> Server must have created a socket (door) that welcomes client’s contact
> Client creates TCP socket, specifying IP address, port number of server process
> When client creates socket: client TCP establishes connection to server TCP
(socket does this automatically, so application doesn’t have to!)

When contacted by client, server TCP creates new socket for server process to
communicate with that particular client

> Allows server to establish connections with multiple clients

> Client port number and IP address used to distinguish clients

Application viewpoint:
> TCP provides reliable, in-order byte-stream transfer between client and server
pProcesses

13

ction: TCP

Client/server socket intera

I server client

ction: TGP
- |

Client/server socket intera

I server client

create socket,
port=x, for incoming request:

serverSocket = socket()

Client/server socket interaction: TCP

=8 server client

create socket,
port=x, for incoming request:

serverSocket = socket()

\
wait for incoming
connection request

connectionSocket =
serverSocket.accept()

14

Client/server socket interaction: TCP

B

create socket,
port=x, for incoming request:

server client _

serverSocket = socket()

\4

wait for incoming TCP create socket,
connection request G = == Fn_ t'_ — _t ————— > connect to hostid, port=x
connectionSocket = connection setup clientSocket = socket()

serverSocket.accept()

14

Client/server socket interaction: TCP

B

create socket,
port=x, for incoming request:

server client _

serverSocket = socket()

\4

wait for incoming TCP create socket,
connection request G = == Fn_ t'_ — _t ————— > connect to hostid, port=x
connectionSocket = connection setup clientSocket = socket()

serverSocket.accept() |

_ send reciuest using
clientSocket

14

Client/server socket interaction: TCP

B

create socket,
port=x, for incoming request:

server client _

serverSocket = socket()

\4

wait for incoming TCP create socket,
connection request G = == Fn_ t'_ — _t ————— > connect to hostid, port=x
connectionSocket = connection setup clientSocket = socket()

serverSocket.accept() |

v .
l _ send request using

> .
read request from clientSocket
connectionSocket «

14

Client/server socket interaction: TCP

server client _

create socket,
port=x, for incoming request:

serverSocket = socket()

\4

wait for incoming TCP create socket,

connection request G = o e — ————— > connect to hostid, port=x
connection setup

connectionSocket = clientSocket = socket()
serverSocket.accept() |
g l _send reciuest using
read request from clientSocket

connectionSocket «

write rep'ly to
connectionSocket

14

Client/server socket interaction: TCP

server client _

create socket,
port=x, for incoming request:

serverSocket = socket()

\4

wait for incoming TCP create socket,

connection request G = o e — ————— > connect to hostid, port=x
connection setup

connectionSocket = clientSocket = socket()
serverSocket.accept() |
g l _send reciuest using
read request from clientSocket

connectionSocket

write rep'ly to
connectionSocket

\ 4
close

connectionSocket

14

Client/server socket interaction: TCP

server client _

create socket,
port=x, for incoming request:

serverSocket = socket()

\4

wait for incoming TCP create socket,

connection request G = o e — ————— > connect to hostid, port=x
connection setup

connectionSocket = clientSocket = socket()
serverSocket.accept() |
g l _send reciuest using
read request from clientSocket

connectionSocket

write rep'ly to '

connectionSocket ~ read reply from

| clientSocket

' l
close

connectionSocket close
14 clientSocket

Networking system calls (some arguments
omitted)!

socket(domain, type) — Allocates a new socket

bind(socket, address) — Binds a socket to a specific address (IP/port)
listen(socket) — Tells the OS to accept incoming connections

accept(socket, remote_address) — Wait for a connection on the socket
connect(socket, address) — Connect to the specified address (IP/port)
send(socket, data) — Sends data

recv(socket, data) — Receives data

close(socket) — Close the connection

15

Client Server

socket socket
bind

listen

Connection j

connect |- [Q_Q_L_!Q_St_ """ > accept

send > recv
l l Await connection
request from
recv ‘ send next client
EOF

close W e > recv
close

16

TCP Sockets in C: socket()

int sockfd = socket(domain, , protocol)
> domalin: integer that specifies communication domain (i.e., type of
address)
> . TCP or UDP

» protocoL: usually set to O (default)
> Returns a file descriptor

NOTE:
» Socket just creates the interface; it does NOT specify where the data is
coming from or where it’'s going to

17

TCP Sockets in C: bind()

int status = bind(sockfd, & . size)
» sockTd: descriptor returned by socketi()
> . struct containing address information

» s1ze: size of the addrport struct
> Returns a status integer

Bind assigns an address to a socket
» Sets the |IP address and reserves a port for the socket

18

TCP Sockets in C: connect()

int status = connect(sockfd, & . size)
> sockTd: descriptor returned by socket()
> . struct containing address information of server to connect to

» s1ze: size of the addrport struct
> Returns a status integer

Client establishes connection with server using connect()

> connect() is blocking - program will wait until connection is either
successfully established or failed

19

TCP Sockets in C: accept()

int s = accept(sockfd, & . size)
» sockTd: descriptor returned by socketi()
> . struct containing address information of client to connect to

» s1ze: size of the addrport struct
» Returns a socket to use for data transfer with client

Client establishes connection with server using connect()

> accept() is blocking - program will wait until for connection before
continuing

20

Calling accept returns a new socket because

A. We can’t write to a bound port
B. Using multiple sockets is faster

C. We can continue to listen on the old socket while we use the new socket

Client Server

socket socket
bind

listen

Connection j

connect |- [Q_Q_L_!Q_St_ """ > accept

send > recv
l l Await connection
request from
recv ‘ send next client
EOF

close W e > recv
close

22

Client Server

socket socket
bind
|
v
listen
Connection j
connect [~ request > accept
send > recv
l l Await connection
request from
recv ‘ send next client
EOF
close W e > recv
close

22

TCP Server

// main.rs
use std::net::TcplListener;

fn main() {

23

TCP Server

// main.rs Creates a new socket
use std::net::TcpListener; and binds it to an
address in form
fn main() { “IP_addr:port_no”
// create socket, bind to address
let listener = TcpListener::bind() .unwrap();

24

Client Server

socket socket
bind
|
v
listen
Connecticn j
connect |- [Q_Q_L_!Q_St_ """ > accept
1 |
v
send > recv
l l Await connection
request from
recv ‘ send next client
EOF
close W e > recv
close

25

TCP Server

// main.rs Creates a new socket
use std::net::TcpListener; and binds it to an
address in form
fn main() { “IP_addr:port_no”
// create socket, bind to address
let listener = TcpListener::bind() .unwrap();

// listen for 1incoming client connections
for stream in listener.incoming() {
let stream = stream.unwrap();
println!(“Connection established!”);

20

TCP Server

// main.rs Creates a new socket
use std::net::TcpListener; and binds it to an
address in form
fn main() { “IP_addr:port_no”
// create socket, bind to address
let listener = TcpListener::bind() .unwrap();

// listen for 1incoming client connections
for stream in listener.incoming() {
let stream = stream.unwrap();
println! (“Connection established!”);

Returns an iterator
} .
that gives us a
seguence of streams

20

Client Server

socket socket
bind
listen
Connection j
connect |- [Q_CI_L_!Q_SI """ > accept
I
l !
send > recv
l l Await connection
request from
recv ‘ send next client
EOF
close W e > recv
close E—

27

The server iIs connected, now let’s handle client data

// main.rs Creates a new socket

use std::net::TcpListener; and binds it to an
address In form
fn main() { “IP_addr:port_no”
// create socket, bind to address
let listener = TcplListener::bind{) .unwrap();

// listen for i1ncoming client connections
for stream in listener.incoming() A
let stream = stream.unwrap();
println! (“Connection established!”);

// receive client data Returns an iterator
handle_connection(stream); that gives us a
s sequence of streams

28

The server iIs connected, now let’s handle client data

// maln.rs

use std::q{
io::{prelude::x, BufReader},
net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {

29

The server iIs connected, now let’s handle client data

// maln.rs

use std::{
io::{prelude::x, BufReader},
net::{TcpListener, TcpStream}, J;

fn handle_connection(mut stream: TcpStream) {

// reader for client data
let buf reader = BufReader::new(&stream);:

30

The server iIs connected, now let’s handle client data

// maln.rs

use std::{
io::{prelude::x, BufReader},
net::{TcpListener, TcpStream}, J;

fn handle_connection(mut stream: TcpStream) {
// reader for client data
let buf reader = BufReader::new(&stream);:
// read 1n data
let client _data: < > = buf_reader

. Lines ()

.map(|result| result.unwrap())
.take_while(|line| !line.is_empty())
.collect();

31

Socket Programming

Two types of sockets
> TCP: reliable, byte stream-oriented
> UDP: unreliable datagram

Application example: [we’ll implement this!]
1. Client reads a line of characters (data) from its keyboard and sends data
L0 server
2. Server receives the data and converts the characters to uppercase
3. Server sends modified data to client
4. Client receives modified data and displays line on its screen

32

Convert client data to all uppercase

// maln.rs

use std::{
io::{prelude::x, BufReader},
net::{TcpListener, TcpStream}, J;

fn handle_connection(mut stream: TcpStream) {
// reader for client data
let buf reader = BufReader::new(&stream);:

Applies the
‘to_uppercase method

// read in data to every item in the
let client_data: < > = buf reader vector
. Lines ()

.map(|result| result.unwrap().to_uppercase())
.take_while(|line| !line.is_empty())
.collect():;

33

Client Server

socket socket
bind
listen
Connection j
connect |- [Q_Q_L_!Q_St_ """ > accept
I
l !
send > recv
l l Await connection
request from
recv ‘ send next client
|
| |
EOF
close W e > recv
close

34

Send the data to the client!

// maln.rs

use std::{
io::{prelude::%, BufReader},
net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
// reader for client data
let buf reader = BufReader::new(&stream):
// read 1n data
let client data: < > = pbuf reader

. lines ()
.map(|result| result.unwrap().to_uppercase())
.take_while(|line| !'line.is_empty())
.collect();
// convert response data into byte (type &[u8])
let response = ..;

35

Send the data to the client!

// maln.rs

use std::{
io::{prelude::%, BufReader},
net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
// reader for client data
let buf reader = BufReader::new(&stream):
// read 1n data
let client data: < > = pbuf reader

. lines ()
.map(|result| result.unwrap().to_uppercase())
.take_while(|line| !'line.is_empty())
.collect();
// convert response data into byte (type &[u8])
let response = ..;
stream.write_all(response).unwrap();

36

Client Server

socket socket
bind
listen
Connection l
connect [Q_Q_L_!Q_St_ """ > accept
|
: l
send > recv
l l Await connection
request from
recv ‘ send next client
EOF
close W e > recv
close

37

Let’s build the client application! We need to connect to the server, using
TcpStream: :connect (), which takes as input the address of the server
to connect to. What’s input should we use to connect to our server?

A. “127.0.0.1:8080” D. More than 1 of the above (which
ones?)

B. “127.0.0.1:/878"

C. “127.0.0.17

Connect to the server

// main.rs (client-side)
use std::net::TcpStream;

fn main() {

39

http://main.rs

Connect to the server

// main.rs (client-side)
use std::net::TcpStream;

fn main() {
// connect to server address
let mut stream = TcpStream::connect() .unwrap();

40

http://main.rs

COnneCt tO the Server Stream needs to be

// main.rs (client-side) mutable because
use std::net::TcpStream; reading/writing modifies

Iits internal state

fn main() {
// connect to server—guuiess
let mut stream = TcpStream::connect() .unwrap();

40

http://main.rs

Client Server

socket socket
bind

listen

Connection j

connect |- [Q_Q_L_!Q_St_ """ > accept

send > recv
l l Await connection
request from
recv ‘ send next client
EOF

close W e > recv
close

41

Client Server

socket socket
bind
listen
Connection j
connect |- [Q_Q_L_!Q_St_ """ > accept
|
: l
send > recv
| l Await connection
* request from
recv ‘ send next client
EOF
close W e > recv
close

41

COnneCt tO the Server Stream needs to be

// main.rs (client-side) mutable because
use std::net::TcpStream; reading/writing modifies

Iits internal state

fn main() {
// connect to server—gudiess
let mut stream = TcpStream::connect() .unwrap();
// send a message
Llet message = b'"Hello, world!"”;

stream.write_all(message);
// read 1n server response

42

http://main.rs

