
CS 241: Systems Programming
Lecture 28. Sockets II

Fall 2025

Prof. Stephen Checkoway

1

Slides adapted from the
slides that accompany

this book

Layered Internet Protocol Stack

2

Application: supporting network applications

‣ e.g., HTTP

Transport: data transfer between processes on hosts

‣ e.g., TCP, UDP

Network: routing packets from source to destination

‣ e.g., IP

Link: data transfer between neighboring elements

‣ e.g., Ethernet, WiFi

Physical: transmit data over wires (or wireless signals)

Application

Transport

Network

Link

Physical

Communicating with the transport layer

3

The application needs to specify:

‣ The destination that will receive the data

‣ What type of transport service it wants

• Does it need security?

• Reliability? (e.g., no packets lost)

• …

‣ The data that should be sent

TCP or UDP

IP address + port number

The most common interface to the transport layer is
the socket interface

TCP vs UDP

4

TCP: Transmission Control
Protocol

TCP guarantees reliability

‣ All messages will get sent to the

application, in order

‣ If a message gets lost, TCP will

retransmit the message until it's
received

TCP makes sure it doesn’t
overwhelm receiver by sending too
much, too quickly

TCP vs UDP

4

TCP: Transmission Control
Protocol

TCP guarantees reliability

‣ All messages will get sent to the

application, in order

‣ If a message gets lost, TCP will

retransmit the message until it's
received

TCP makes sure it doesn’t
overwhelm receiver by sending too
much, too quickly

UDP: User Datagram Protocol

UDP does NOT guarantee
reliability

‣ Messages may be lost or arrive

out-of-order

Because UDP doesn’t have to
worry about reliability, it is much
faster

For each of the following applications, choose whether you would use TCP
or UDP, and justify why you would choose it. [Select any letter on your
clicker]

• Online gaming

• SSH remote access

• Email

• Video conferencing

• Whatsapp

5

Sockets

6

Sockets

6

Process sends/receives messages to/from its socket

‣ Not unlike communicating between threads!

Sockets

6

Process sends/receives messages to/from its socket

‣ Not unlike communicating between threads!

Sockets are like a door

‣ Sending process shoves message out the door

‣ Sender relies on transport infrastructure at receiver door to deliver the

message to socket at receiving process

Sockets

6

Process sends/receives messages to/from its socket

‣ Not unlike communicating between threads!

Sockets are like a door

‣ Sending process shoves message out the door

‣ Sender relies on transport infrastructure at receiver door to deliver the

message to socket at receiving process
Application

Transport
Network

Link
Physical

Source
(client)

Destination
(server)

Application

Transport
Network

Link
Physical

SocketProcess Process
Controlled by
app developer

Controlled by
OS

Socket Programming

7

Goal: build client/server applications that communicate using sockets

Two types of sockets

‣ TCP socket (stream)

‣ UDP socket (datagram)

Application

Transport
Network

Link
Physical

Source
(client)

Destination
(server)

Application

Transport
Network

Link
Physical

SocketProcess Process
Controlled by
app developer

Controlled by
OS

Socket Programming

8

Two types of sockets

‣ TCP: reliable, byte stream-oriented

‣ UDP: unreliable datagram

Application example: [we’ll implement this!]

1. Client reads a line of characters (data) from its keyboard and sends data
to server

2. Server receives the data and converts the characters to uppercase

3. Server sends modified data to client

4. Client receives modified data and displays line on its screen

Socket Programming with UDP

9

UDP: no “connection” between client and server:

‣ No handshaking before sending data

Network Protocols

10

time

TCP connection
response

<file>

TCP connection
request

GET http://cs.oberlin.edu

Network protocols are between
computers (devices) instead of
humans

A protocol defines:

‣ the format and order of

messages send/received
between network entities

‣ the actions taken upon
message receipt

http://cs.oberlin.edu

Socket Programming with UDP

11

Socket Programming with UDP

11

UDP: no “connection” between client and server:

‣ No handshaking before sending data

‣ Sender attaches IP destination address and port # to each packet

‣ Receiver extracts sender IP address and port # from received packet (so

it knows where to send response)

Socket Programming with UDP

11

UDP: no “connection” between client and server:

‣ No handshaking before sending data

‣ Sender attaches IP destination address and port # to each packet

‣ Receiver extracts sender IP address and port # from received packet (so

it knows where to send response)

UDP: transmitted data may be lost or received out-of-order

Socket Programming with UDP

11

UDP: no “connection” between client and server:

‣ No handshaking before sending data

‣ Sender attaches IP destination address and port # to each packet

‣ Receiver extracts sender IP address and port # from received packet (so

it knows where to send response)

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:

‣ UDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server processes

Client/server socket interaction: UDP

12

server client

Client/server socket interaction: UDP

12

create socket:
clientSocket = socket(…)

create socket, port= x:

serverSocket = socket(…)

server client

Client/server socket interaction: UDP

12

create socket:
clientSocket = socket(…)

Create datagram with serverIP address
And port=x; send datagram via
clientSocket

create socket, port= x:

serverSocket = socket(…)

server client

Client/server socket interaction: UDP

12

create socket:
clientSocket = socket(…)

Create datagram with serverIP address
And port=x; send datagram via
clientSocket

create socket, port= x:

serverSocket = socket(…)

read datagram from
serverSocket

server client

Client/server socket interaction: UDP

12

create socket:
clientSocket = socket(…)

Create datagram with serverIP address
And port=x; send datagram via
clientSocket

create socket, port= x:

serverSocket = socket(…)

read datagram from
serverSocket

server client

write reply to serverSocket
specifying client address, port
number

Client/server socket interaction: UDP

12

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket = socket(…)

Create datagram with serverIP address
And port=x; send datagram via
clientSocket

create socket, port= x:

serverSocket = socket(…)

read datagram from
serverSocket

server client

write reply to serverSocket
specifying client address, port
number

Socket Programming with TCP

13

TCP: client MUST establish a connection with the server before sending data

‣ Server must have created a socket (door) that welcomes client’s contact

‣ Client creates TCP socket, specifying IP address, port number of server process

‣ When client creates socket: client TCP establishes connection to server TCP

(socket does this automatically, so application doesn’t have to!)

When contacted by client, server TCP creates new socket for server process to
communicate with that particular client

‣ Allows server to establish connections with multiple clients

‣ Client port number and IP address used to distinguish clients

Application viewpoint:

‣ TCP provides reliable, in-order byte-stream transfer between client and server

processes

Client/server socket interaction: TCP

14

server client

Client/server socket interaction: TCP

14

server client

create socket,
port=x, for incoming request:
serverSocket = socket()

Client/server socket interaction: TCP

14

server client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

Client/server socket interaction: TCP

14

server client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

TCP
connection setup

Client/server socket interaction: TCP

14

server client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

send request using
clientSocket

TCP
connection setup

Client/server socket interaction: TCP

14

server client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

send request using
clientSocketread request from

connectionSocket

TCP
connection setup

Client/server socket interaction: TCP

14

server client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Client/server socket interaction: TCP

14

server client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

Client/server socket interaction: TCP

14

server client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Networking system calls (some arguments
omitted)!
socket(domain, type) — Allocates a new socket

bind(socket, address) — Binds a socket to a specific address (IP/port)

listen(socket) — Tells the OS to accept incoming connections

accept(socket, remote_address) — Wait for a connection on the socket

connect(socket, address) — Connect to the specified address (IP/port)

send(socket, data) — Sends data

recv(socket, data) — Receives data

close(socket) — Close the connection

15

16

TCP Sockets in C: socket()

17

int sockfd = socket(domain, type, protocol)
‣ domain: integer that specifies communication domain (i.e., type of

address)

‣ type: TCP or UDP

‣ protocol: usually set to 0 (default)

‣ Returns a file descriptor

NOTE:

‣ Socket just creates the interface; it does NOT specify where the data is

coming from or where it’s going to

TCP Sockets in C: bind()

18

int status = bind(sockfd, &addrport, size)
‣ sockfd: descriptor returned by socket()

‣ addrport: struct containing address information

‣ size: size of the addrport struct

‣ Returns a status integer

Bind assigns an address to a socket

‣ Sets the IP address and reserves a port for the socket

TCP Sockets in C: connect()

19

int status = connect(sockfd, &addrport, size)
‣ sockfd: descriptor returned by socket()

‣ addrport: struct containing address information of server to connect to

‣ size: size of the addrport struct

‣ Returns a status integer

Client establishes connection with server using connect()

‣ connect() is blocking - program will wait until connection is either

successfully established or failed

TCP Sockets in C: accept()

20

int s = accept(sockfd, &addrport, size)
‣ sockfd: descriptor returned by socket()

‣ addrport: struct containing address information of client to connect to

‣ size: size of the addrport struct

‣ Returns a socket to use for data transfer with client

Client establishes connection with server using connect()

‣ accept() is blocking - program will wait until for connection before

continuing

Calling accept returns a new socket because

A. We can’t write to a bound port

B. Using multiple sockets is faster

C. We can continue to listen on the old socket while we use the new socket

21

22

22

TCP Server
// main.rs
use std::net::TcpListener;

fn main() {
 // create socket, bind to address
 let listener = TcpListener::bind(“127.0.0.1:7878").unwrap();

 // listen for incoming client connections
 for stream in listener.incoming() {
 let stream = stream.unwrap();
 println!(“Connection established!”);
 }
}

23

TCP Server
// main.rs
use std::net::TcpListener;

fn main() {
 // create socket, bind to address
 let listener = TcpListener::bind("127.0.0.1:7878").unwrap();

 // listen for incoming client connections
 for stream in listener.incoming() {
 let stream = stream.unwrap();
 println!(“Connection established!”);
 }
}

24

Creates a new socket
and binds it to an
address in form

“IP_addr:port_no”

25

TCP Server
// main.rs
use std::net::TcpListener;

fn main() {
 // create socket, bind to address
 let listener = TcpListener::bind(“127.0.0.1:7878").unwrap();

 // listen for incoming client connections
 for stream in listener.incoming() {
 let stream = stream.unwrap();
 println!(“Connection established!”);
 }
}

26

Creates a new socket
and binds it to an
address in form

“IP_addr:port_no”

TCP Server
// main.rs
use std::net::TcpListener;

fn main() {
 // create socket, bind to address
 let listener = TcpListener::bind(“127.0.0.1:7878").unwrap();

 // listen for incoming client connections
 for stream in listener.incoming() {
 let stream = stream.unwrap();
 println!(“Connection established!”);
 }
}

26

Creates a new socket
and binds it to an
address in form

“IP_addr:port_no”

Returns an iterator
that gives us a

sequence of streams

27

The server is connected, now let’s handle client data

// main.rs
use std::net::TcpListener;

fn main() {
 // create socket, bind to address
 let listener = TcpListener::bind(“127.0.0.1:7878").unwrap();

 // listen for incoming client connections
 for stream in listener.incoming() {
 let stream = stream.unwrap();
 println!(“Connection established!”);

 // receive client data
 handle_connection(stream);
 }
}

28

Creates a new socket
and binds it to an
address in form

“IP_addr:port_no”

Returns an iterator
that gives us a

sequence of streams

The server is connected, now let’s handle client data

// main.rs
use std::{
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
 // reader for client data
 let buf_reader = BufReader::new(&stream);
 // read in data

let client_data: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap())
 .take_while(|line| !line.is_empty())
 .collect();
}

29

The server is connected, now let’s handle client data

// main.rs
use std::{
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
 // reader for client data
 let buf_reader = BufReader::new(&stream);
 // read in data

let client_data: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap())
 .take_while(|line| !line.is_empty())
 .collect();
}

30

The server is connected, now let’s handle client data

// main.rs
use std::{
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
 // reader for client data
 let buf_reader = BufReader::new(&stream);
 // read in data

let client_data: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap())
 .take_while(|line| !line.is_empty())
 .collect();
}

31

Socket Programming

32

Two types of sockets

‣ TCP: reliable, byte stream-oriented

‣ UDP: unreliable datagram

Application example: [we’ll implement this!]

1. Client reads a line of characters (data) from its keyboard and sends data
to server

2. Server receives the data and converts the characters to uppercase

3. Server sends modified data to client

4. Client receives modified data and displays line on its screen

Convert client data to all uppercase
// main.rs
use std::{
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
 // reader for client data
 let buf_reader = BufReader::new(&stream);
 // read in data

let client_data: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap().to_uppercase())
 .take_while(|line| !line.is_empty())
 .collect();
}

33

Applies the
`to_uppercase` method

to every item in the
vector

34

Send the data to the client!
// main.rs
use std::{
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
 // reader for client data
 let buf_reader = BufReader::new(&stream);
 // read in data

let client_data: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap().to_uppercase())
 .take_while(|line| !line.is_empty())
 .collect();
 // convert response data into byte (type &[u8])
 let response = …;
 stream.write_all(response).unwrap();
}

35

Send the data to the client!
// main.rs
use std::{
 io::{prelude::*, BufReader},
 net::{TcpListener, TcpStream}, };

fn handle_connection(mut stream: TcpStream) {
 // reader for client data
 let buf_reader = BufReader::new(&stream);
 // read in data

let client_data: Vec<_> = buf_reader
 .lines()
 .map(|result| result.unwrap().to_uppercase())
 .take_while(|line| !line.is_empty())
 .collect();
 // convert response data into byte (type &[u8])
 let response = …;
 stream.write_all(response).unwrap();
}

36

37

Let’s build the client application! We need to connect to the server, using
TcpStream::connect(), which takes as input the address of the server
to connect to. What’s input should we use to connect to our server?

A. “127.0.0.1:8080”

B. “127.0.0.1:7878”

C. “127.0.0.1”

D. More than 1 of the above (which
ones?)

38

Connect to the server
// main.rs (client-side)
use std::net::TcpStream;

fn main() {
 // connect to server address
 let mut stream = TcpStream::connect(“127.0.0.1:7878").unwrap();
 // send a message

let message = b"Hello, world!”;
stream.write_all(message);

 // read in server response
 …

}

39

http://main.rs

Connect to the server
// main.rs (client-side)
use std::net::TcpStream;

fn main() {
 // connect to server address
 let mut stream = TcpStream::connect(“127.0.0.1:7878").unwrap();
 // send a message

let message = b"Hello, world!”;
stream.write_all(message);

 // read in server response
 …

}

40

http://main.rs

Connect to the server
// main.rs (client-side)
use std::net::TcpStream;

fn main() {
 // connect to server address
 let mut stream = TcpStream::connect(“127.0.0.1:7878").unwrap();
 // send a message

let message = b"Hello, world!”;
stream.write_all(message);

 // read in server response
 …

}

40

Stream needs to be
mutable because

reading/writing modifies
its internal state

http://main.rs

41

41

Connect to the server
// main.rs (client-side)
use std::net::TcpStream;

fn main() {
 // connect to server address
 let mut stream = TcpStream::connect(“127.0.0.1:7878").unwrap();
 // send a message

let message = b"Hello, world!”;
stream.write_all(message);

 // read in server response
 …

}

42

Stream needs to be
mutable because

reading/writing modifies
its internal state

http://main.rs

