CS 241: Systems Programming
Lecture 25. Threads

Fall 2025
Prof. Stephen Checkoway

Threads

A process may be composed of multiple threads of execution

Each thread runs concurrently with but independent of other threads in the
process

Process

hread #1 Thread #2

Threads are a bit like cooperating processes inside a process

https://en.wikipedia.org/wiki/Thread_(computing)#/media/File:Multithreaded_process.svg
2

Time

Relationship between threads

Each thread in a process shares all of the process’s
> memory (data and code)
> open files
> permissions (e.g., to access the file system)
> user |ID, group ID, process ID

Each thread in a process has its own
> function call stack with a stack pointer (sp)
» program counter (pc) indicating the next instruction
to execute

Thread 1 stack
<4 sp

Thread 2 stack
<4 sp

Thread 3 stack
<4 sp

Heap

Static data
pc (T2)

pc (T1)
pc (T3)

Threads are useful in two key situations:

1. There is a significant quantity of data processing that needs to occur and
the data can be processed independently (or with limited interaction)

2. The process is performing independent tasks at the same time

Think of some examples of each

A. Select any option on your clicker

Scheduling threads

There are multiple ways to implement threads

Most common: Each application thread is independently scheduled by
the operating system’s scheduler

Less common (green threads): The application manages threads itself using
Its own scheduler

There are pros and cons of each approach but Rust’s native threads use the
common approach

Creating a new thread

To create a new thread, use std: :thread: :spawn() and pass it a closure

use std::thread:;
Code in closure runs in

fn main() { the new thread

let t = thread::spawn(|| {
println! ("Hello from the spawned thread!");
F);

println!("Hello from the main thread!");
t.join().unwrap();

}

Output will appear in some, undefined order

0

The spawn function

pub fn spawn<F, T>(f: F) —> JoinHandle<T>
where

F: FnOnce() —> T + Send + 'static,

T: Send + 'static,

The f parameter Is the closure to call
> |t will only be called a single time, so it’'s an FnOnce
> The closure returns some type I when the thread exits
» The spawn () function returns a JoinHandle<T> which can be used
to wait for the thread to exit
> |f there is no return value, then T is ()

Joining a thread

The process exits when the main thread exits, regardless of what other
threads are doing

If you want to wait for a thread to complete, call the .join() method on the

JoinHandle returned by spawn()
let t = thread::spawn(|| { .. });

// .
t.join().unwrap();

.join() returns a Result which you’ll want to unwrap
> The Err case iIs when the thread panics and there’s usually not a good
way to recover from that, so calling unwrap is fine

Thread run order

Absent explicit synchronization, threads run concurrently

Threads may be preempted (interrupted and another thread starts running)
at any time

The order of output produced by threads is not defined (with respect to each
other)

Which of these is possible as the first five output lines from this code?
for thread num in 0..10 {
let t = thread::spawn(move || {

for in 0..5 {
printin!("Hello from thread {thread_num}");
}

});

D: ALL of the above

thread 5 nread 0 11 thread 0 (and more)
thread 6 nread 0 1L thread 1
thread 3 nread 0 1L thread 2
thread 4 nread 0 1L thread 3
thread 4 nread 0 1L thread 4

Data races (race condition)

A data race Is when one thread tries to access a value in memory while
another thread is writing to the same location

This can corrupt the data being written
> This is part of what makes programming with threads so difficult

Rust’s type system prevents data races in safe Rust code!

11

Data race example: unsafe Rust

Data race example: unsafe Rust

fn main() {
static mut COUNTER: 132 = 0;
let mut threads = Vec::new():

Data race example: unsafe Rust

fn main() {
static mut COUNTER: 132 = 0;
let mut threads = Vec::new();
// Spawn 10 threads
for _ in 0..10 {

12

Data race example: unsafe Rust

fn main() {
static mut COUNTER: 132 = 0;
let mut threads = Vec::new();
// Spawn 10 threads
for _ in 0..10 {
let t = thread::spawn(move || {
for in 0..1000 {

unsafe { COUNTER += 1 J; unsafe to read/write
} .
1) mutable global variables

12

Data race example: unsafe Rust

fn main() {
static mut COUNTER: 132 = 0;
let mut threads = Vec::new();
// Spawn 10 threads
for _ in 0..10 {
let t = thread::spawn(move || {
for in 0..1000 {

unsafe { COUNTER += 1 J; unsafe to read/write
} .
1) mutable global variables

threads.push(t);

12

Data race example: unsafe Rust

fn main() {
static mut COUNTER: 132 = 0;
let mut threads = Vec::new();
// Spawn 10 threads
for _ in 0..10 {
let t = thread::spawn(move || {
for in 0..1000 {

“unsafe { COUNTER += 1 }:
+
});

threads.push(t);

unsafe to read/write
mutable global variables

}
// Wait for all 10 threads to complete

for t in threads {
t.join().unwrap();
+

12

Data race example: unsafe Rust

fn main() {
static mut COUNTER: 132 = 0;
let mut threads = Vec::new();
// Spawn 10 threads
for _ in 0..10 {
let t = thread::spawn(move || {
for in 0..1000 {

“unsafe { COUNTER += 1 }:
¥
});

threads.push(t);

unsafe to read/write
mutable global variables

}
// Wait for all 10 threads to complete

for t in threads {
t.join().unwrap();
+

println! ("COUNTER's value, {}, should be 10000", unsafe { COUNTER });

12

Data race example: unsafe Rust

fn main() {
static mut COUNTER: 132 = 0;
let mut threads = Vec::new();
// Spawn 10 threads
for _ in 0..10 {
let t = thread::spawn(move || {
for in 0..1000 {

“unsafe { COUNTER += 1 }:
I3
});

threads.push(t);

unsafe to read/write
mutable global variables

}
// Wait for all 10 threads to complete

for t in threads {
t.join().unwrap();
}

println! ("COUNTER's value, {}, should be 10000", unsafe { COUNTER });

COUNTER's value, 8653, should be 10000

12

Value changes each time

In the previous example, the COUNTER value was not 10000 at the end.

What, specifically, went wrong?

A. The program printed the COUNTER value before all threads completed
(Why??)

B. The unsafe keyword indicates that the behavior isn’t defined

C. Multiple threads reading/writing the same location caused some
increments to be lost (how?)

. Rust prevented multiple threads from writing to the same location at the
same time by preventing all but one thread from writing to the location at

a time (which one?)

Communicating between threads

Using a mutable global variable was a bad idea

Some good options:
> Atomics — like the AtomicBool we saw with signal handlers

> Mutexes — Mutex = MUTual EXclusion, a way to limit access to a piece

of data to only one thread at a time
> RwlLock — Like a Mutex but supports multiple simultaneous readers

> Multi-producer, single-consumer (MPSC) queue — A one-way channel
for multiple threads (the producers) to send data to a single thread (the

consumer)

14

MPSC In Rust

use std::thread;
use std::sync: :mpsc;

fn maint) tx is the t it g
// Create a simple streaming channel [IXISthetransmitter{senden

< th .

let (tx, rx) = mpsc::channel(); 75 T R

thread::spawn(move || A1 Data sent via tx.send() is
tx.send(10).unwrap(); received via rx.recv()

});

let num = rx.recv().unwrap();
println! ("{num}");

15

MPSC with multiple producers

We can clone the tx end of the channel for each thread and use it

Partially contrived example: Finding a bunch of prime numbers
> Prime numbers are incredibly useful in cryptography where you typically
need pretty large primes
> For this example, let’s just generate some small primes for simplicity

Approach
» Clone the tx for each thread
> Inside each thread in a loop, generate a random number and if it Is
prime, send it through the channel
> |In the main thread, receive the primes and add them to a vector

16

Generating the primes

let (tx, rx) = mpsc::channel();
for _ in 0..8 {

let tx = tx.clone():

thread: :spawn(move || {
let mut rng = rand::thread _rng();
loop A
let num: u32 = rng.gen(); | Implemented the naive “test
division by every odd number up
if is_prime(num) { to the square root of num”
if tx.send(num).is err() {
return,
i
}
}
r);

17

Receiving the primes in the main thread

// Get 20000 primes
let mut primes = Vec::new();
for in 0..20000 <

¥

primes.push(rx.recv().unwrap());

With 1 thread, it takes my laptop about 9 or 10 seconds to generate 20000
random (smallish) prime numbers

With 8 threads, it takes my laptop about 1.5 seconds

18

Scoped threads

What we want:
> To share local variable with multiple threads

Problem:
> Variable may go out of scope when the function that spawns the
threads returns

19

fn compute_results() {
let dataset = get dataset();

let t1 = thread::spawn(]|]| {
for data in &dataset {
// Compute some result
}

// Save result
F);
let t2 = thread::spawn(]|]| {
for data in &dataset {
// Compute some other result

¥
// Save result
1)
t1.j0in(); error[EO373]: closure may outlive the current
t2: join() f function, but it borrows dataset, which is
} owned by the current function

20

The previous example gave an error that the closure may outlive the current
function but the closure borrows dataset which is owned by the function.

The function ended by joining the threads. Is the error message correct?
fn compute_results() {
let dataset = get dataset();

let t1 = thread::spawn(]|| { .. });
}

let t2 = thread::spawn(|]| { .. });

t1l.join();
t2.join();

A. Yes [Why?] B. No [Why?]

Solution: Scoped threads!

Scoped threads let us declare a new scope for the threads such that the
function spawning the threads cannot exit the scope until the threads have

been joined

thread::scoped(|s]| {
\ s.spawn(|| {1 « });
) ;

Inside the closure, s can be used to spawn threads that will be joined before
the end of the thread::scoped() call

22

fn compute_results() {
let dataset = get dataset();

thread: :scope(|s| {
let t1 = s.spawn(]|]| {
for data in &dataset A
// Compute some result
}

// Save result

});
let t2 = s.spawn(|| {

for data in &dataset {
// Compute some other result
}

// Save result

});

}); // threads are joined here

23

