CS 241: Systems Programming
Lecture 24. Closures

Fall 2025
Prof. Stephen Checkoway

Motivating example

You have a slice of i32 and you want to find the first element that’s even
fn find _even(v: &[i32]) —> Option<i32> {
for &num in v A
if num % 2 == 0 {
return Some(num)
}

None

Motivating example 2

You have a slice of &strs and you want to find the first element that starts

with the letter T
fn find starts with _t<'a>(v: &[&'a str]) —> Option<&'a str> {
for &s in v {
if s.starts with('T"') {
return Some(s);
s

None

What would we replace XXX with to find the first 132 less than 57

fn find 1t _5(v: &[i32]) —> Option<i32> {
for x in v {
if XXX {
return Some(x):
I3

D. Something else

Basically the same function!

fn find_xxx(v: &[SomeType]) —> Option<SomeType> {
for x in v 1
if XXX {
return Some(x);
}

}

None

We can make this generic if we can come up with some way to abstract the
XXX

Using a predicate

We can make the function generic by taking a predicate as an argument

fn find _pred<T: Clone>(v: &[T], f: fn(&T) —> bool) —> Option<T> {
for x in v {
if f(x) {
return Some(x.clone())
+

None

}

Note that the .clone() method was added and a Clone trait bound

fn(&T) —> bool is the type of a function taking &T and returning a bool

(a predicate)
o

fn is even(x: &i32) —> bool {
X % 2 ==
}

fn starts with t(s: &&str) —> bool {
s.starts with('T")
s

fn main() {
let v = vec![1, 2, 3, 4, 5];
printin!("{:?}", find pred(&v, is _even));

let s = vec!["Alpha", "Tau", "Delta"l];
println!("{:?}", find _pred(&s, starts with t));
+

Output:
Some(2)
Some("Tau")

Think about the find_pred() function just discussed
fn find _pred<T: Clone>(v: &[T], f: fn(&T) —> bool) —> Option<T>

Think of some advantages to using find_pred() vs. writing individual

functions to find different items in slices for different predicates and types of
elements

Think of some limitations. What happens if you want to find the first element

greater than some variable”?

A. Choose A

E. OrE, if you'd prefer

Limited to pre-defined functions

let minimum = 3;

fn pred(x: &i32) —> bool {
kX > milnimum

s

println!("{:?}", find pred(&v, pred));

: can't capture dynamic environment in a fn 1item
--> closures.rs:117:14

|
| XX > minimum
|
|

help: use the || { ... } closure form instead

Closures

Closures

Closures are anonymous functions

10

Closures

Closures are anonymous functions
fn main() A
let f = || 1
println! ("Anonymous closure 0");
Fi

10

Closures

Closures are anonymous functions

fn main() {
let f = || {
println! ("Anonymous closure 0");

¥

let g = [x] {
println! ("Anonymous closure 1");
3 % X

b

10

Closures

Closures are anonymous functions

fn main() {
let f = || {
println! ("Anonymous closure 0");
¥

let g = [x] {
println! ("Anonymous closure 1");
3 % X

b
f(): // Calls closure bound to f

10

Closures

Closures are anonymous functions
fn main() A
let f = || 1
println! ("Anonymous closure 0");

¥

let g = [x] {
println! ("Anonymous closure 1");
3 % X

¥

f(); // Calls closure bound to f
let y = g(24); // Calls closure bound

10

Closures

Closures are anonymous functions
fn main() A
let f = || 1
println! ("Anonymous closure 0");

¥

let g = [x] {
println! ("Anonymous closure 1");
3 % X

¥

f(); // Calls closure bound to f
let y = g(24); // Calls closure bound

println! ("{y}");

10

Closures

Anonymous closure O

Anonymous closure 1

Closures are anonymous functions 792
fn main() {
let f = || {
println! ("Anonymous closure 0");
¥
let g = [x] {
println! ("Anonymous closure 1");
3 % X
¥

f(); // Calls closure bound to f
let vy = g(24); // Calls closure bound to g

println! ("{y}");

10

Using functions

Using functions

We can also define functions inside of functions

11

Using functions

We can also define functions inside of functions
fn main() {

fn () {
printin!("Named function f");
}

fn g(x: 132) — 132 A
printin!("Named function g");
3 % X

11

Using functions

We can also define functions inside of functions

fn main() {
fn () {
printin!("Named function f");
}

fn g(x: 132) — 132 A
printin!("Named function g");
3 % X

}

f();

let y = g(24);
printtn! ("{y}");

11

Using functions

Named function f

Named function g
We can also define functions inside of functions 79

fn main() {
fn () {

printin!("Named function f");

}

fn g(x: 132) — 132 A
println!("Named function g");
3 % X

}

f();

let v = g(24);

printtn! ("{y}");

11

Closures with/without types/braces

Closures can (and sometimes need) type annotations

Single-expression closures can omit the braces

Compare

fn add one vl (x: u32) — u32 { x + 1}
let add_one v2 = |x: u32| —> u32 { x + 1 };
let add_one_v3 = |X]| { x + 1 };
let add_one_v4 = |X| X + 1

12

Which of the following is a valid closure of two arguments, x and vy, that
multiplies x by y+1?

A. || x % (y + 1)

B. [x, y| x * (y + 1)

C. |X, y|] { x*x (y + 1) }

D. All of the above

E. Band C

Let’s follow the help suggestion

let minimum = 3;

fn pred(x: &i32) —> bool {
kX >= minimum

s

println!("{:?}", find pred(&v, pred));

: can't capture dynamic environment in a fn 1item
--> closures.rs:117:15

XX >= minimum

help: use the || { ... } closure form instead

14

Another error???

Another error???

let minimum = 3;
println!("{:?}", find pred(&v, |x| *x > minimum));

15

Another error???

let minimum = 3;
println!("{:?}", find pred(&v, |x| *x > minimum));

: mismatched types
——> closures.rs:116:32

116 | println!("{:?}", find_pred(&v, |x| *x > minimum));

| arguments to this function are 1incorrect

15

Closures vs. anonymous functions

Closures are anonymous functions that capture their environment
> They can access variables defined outside the closure itself

You can think of closures as
> A pointer to a function; plus
> Additional data (or references to data)

Stack
let minimum = 3; '“a.“.”.
let pred = |x: &i32| *x > minimum; Minimum 3 <
println!("{}", pred(&10)); red main: :{closureM

minimume-

16

Another example

https://seuss.fandom.com/wiki/Thing_One_and_Thing_Two?file=Thing1-and-thing2.jpg
17

Another example

fn main() {
let thing = String::from("Thing");
let f = |s| println!("{thing} {s}");

https://seuss.fandom.com/wiki/Thing_One_and_Thing_Two?file=Thing1-and-thing2.jpg
17

Another example

fn main() {
let thing = String::from("Thing");
let f = |s| println!("{thing} {s}");

f(1);
} f(Z); Stack
main
thing @ <
. main::{closurffgl,///:>

thing @

https://seuss.fandom.com/wiki/Thing_One_and_Thing_Two?file=Thing1-and-thing2.jpg
17

Another example

fn main() {
let thing = String::from("Thing");
let f = |s| println!("{thing} {s}");

f(1);
f(2) ; Stack
} .
mailn
Note that f contains a thing e | <
reference to thing F main: :{closury

thing @

https://seuss.fandom.com/wiki/Thing_One_and_Thing_Two?file=Thing1-and-thing2.jpg
17

Closures implement some traits

Closures implement some traits

FnOnce is the trait implemented by every closure
> |t says that the closure may be called at least one time
> |f this is the only trait implemented by the closure, then the closure may
be called at most one time

18

Closures implement some traits

FnOnce is the trait implemented by every closure
> |t says that the closure may be called at least one time
> |f this is the only trait implemented by the closure, then the closure may
be called at most one time

FnMut is the trait implemented by closures that mutate their environment via
mutable reference

» Such a closure can be called multiple times

> Any closure implementing FnMut also implements FnOnce

18

Closures implement some traits

FnOnce is the trait implemented by every closure
> |t says that the closure may be called at least one time
> |f this is the only trait implemented by the closure, then the closure may
be called at most one time

FnMut is the trait implemented by closures that mutate their environment via
mutable reference

» Such a closure can be called multiple times

> Any closure implementing FnMut also implements FnOnce

Fn is the trait implemented by closures that only access their environment
via shared reference

» Such a closure can be called multiple times

> Any closure implementing Fn also implements FnMut and FnOnce

18

We want to run the closure assigned to £ below on every element of a vector

as shown. What trait(s) does the closure implement? (Hint 1: Can f be called
multiple times? Hint 2: Does f access its environment using a mutable
reference”? Does f access its environment using a shared reference?)

let mut v = vec![1l, 5, 8, -3, 127;
let £ = |x: &mut i32| *x = *x + 1;

for x in v.iter mut() {
£(x);
}

A. FnOnce C. Fn (and thus FnMut and FnOnce)

B. FnMut (and thus FnOnce) D. Something else

Rust infers the appropriate trait based on what the
closure does with the captured variables

fn main() {
let v = vec![1, 2, 3, 4, 5];
let s . = String::from("A string");
let mut t | = String::from("abc");

20

Rust infers the appropriate trait based on what the
closure does with the captured variables

fn main() {

let v 32> = vec![1, 2, 3, 4, 5]: Into_iter() consumes v and thus
let s ring = String::from("A string"); f can only be called once

let mut t ring = String::from("abc");

let f: im nOn 32 = || = 132 { v.into_iter().sum() };

let g: im () = || printin!("{s}");

let mut h: impl FnMut() = || t.push_str(string: "modified");

21

Rust infers the appropriate trait based on what the
closure does with the captured variables

fn main() {

let v = vec![1, 2, 3, 4, 5]: Into_iter() consumes v and thus
let s ring = String::from("A string"); f can only be called once

let mut t ring = String::from("abc");

let f . . 32 = || = i32 { v.into_iter().sum() };

let g: im = || println!("{s}");

let mut h _ () = || t.push_str(str. "modified");

println! ("{}", f());

gl);
h(): Output:

Brintln! ("{t}"); 15 .
} A string

abcmodified

22

Rust infers the appropriate trait

Stack Hea

let v: i32> = vec![1, 2, 3, 4, 5]; 5 P

let s: String = String::from("A string"); main > 12345

let mut t: String = String::from("abc"); v ._f* A string
S /> abc
t

let f: 1mpl FnOnce(i32 = || => 132 { v.into_iter().sum() };

let g: impl Fn() = || println!("{s}");

let mut h: impl FnMut() = || t.push_str(string: "modified");

f owns v

g has a shared reference to s
h has a mutable reference to t

23

Forcing a closure to own the values it references:
the move keyword

Using move before a closure forces the closure to take ownership of the
values it uses from its environment by moving the values into the closure

It does not change which traits are implemented
> Traits are determined by what the closure does

fn main() {

let s

let t

let print_s
let print_t

print_s();
print_t();
print_t();

String::from("referenced");
String::from("owned");

|| printin!("{s}");
move || println!("{t}");

24

Stack
main

S

print_s

print_t

.i

main: :{closur

main::{

Heap

» referenced

owned

Fn vs. fn

fn find_pred<T: Clone>(v: &[T], f: fn(&T) —> bool) —> Option<T>
The f parameter is a function pointer type

> We can pass it functions defined via fn foo() ...

> We can also pass it closures that do not access their environment

Fn(&T) —> bool is a trait implemented by closures (and functions) that
take a reference to T as an argument and return a bool

25

Generic function that takes a closure

fn find _pred<T, F>(v: &I[T], f: F) — Option<T>

where
T: Clone,
F: Fn(&T) —> bool,
1
for x in v {
if f(x) {
return Some(x.clone());
+
+
None
+

Note how the where clause lets us more clearly write trait bounds

20

What will this print?

let v = vec!l[1, 2, 3, 4, 51;

let s = vec!["Alpha", "Tau", "Delta"];
let minimum = 3;

println!("{:?}", find_pred(&v, |[x|
println!("{:?}", find _pred(&s, |[x| x.starts_with('T')))'
| X |

println! ("{:?}", find pred(&v, xX >= minimum)):

fn find _pred<T, F>(v: &I[T], f: F) —> Option<T>
where
T: Clone,

A. Discuss with your F: Fn(&T) —> bool,
neighbors and select any |
: _ for x in v A1
option on your clicker if f(x) {
when you have an answer return Some(x.clone());
}

Fn(&T) -> bool was overly restrictive

FNn(&T) -> bool is too restrictive
> |t doesn’t allow the closure to modify the environment

We can replace Fn(&T) -> bool with FnMut(&T) -> bool
> Since every closure that implements Fn implements FnMut, this is
allowing strictly more closures to work with our function
> |In particular, we can now modify variables in the environment

28

Fn -> FnMut

fn find_pred<T, F>(v: &[T], mut f: F) —> Option<T>
where

T: Clone,

F: FnMut(&T) —> bool,

Needs to be mutable

1
for x in v { FnMut rather than Fn
if f(x) {
return Some(x.clone()):
+
+
None

29

What will this print? A.v2: [] x: Some(3)

let v = vec!l[1, 2, 3, 4, 51]; _ _
let minimum = 3: B. v2: [1, 2] x: Some(3)

let mut v2 = Vec::new(): C.v2: [1, 2] x:t Some(5)
D. v2:[1, 2, 3, 4, 5] x: Some(3)
let x = find_pred(&v, |x]| Ao E. Something else
if %X < minimum <
v2.push(*x);
false

} else { | |
true fn find_pred<T, F>(v: &[T], f: F) —> Option<T>

} where
T: Clone,

F); F: Fn(&T) —=> bool,
print!("v2: {v2:?} ");

Lntln! ("x: 75"), for x in v {
printint ("x: 1x:737) i f(x) {

return Some(x.clone());

}

Advice

When designing an interface that takes a closure, use trait with the least
functionality required

» |f the closure will be called at most one time, use FnOnce
> If the closure will be called multiple times, use FnMut

> If the closure will be called multiple times but you don’t want any
modifications, or modifications aren’t possible, use Fn

Or, start with FnOnce and if the compiler complains you need to use one of
the others, use that one

31

Closures in the standard library

The Rust standard library exposes a bunch of functionality like our
find_pred() by providing methods for iterators that take closures

Some return other iterators, others return a value

Let’s look at some common examples

> . find()/.rfind ()
.position()/.rposition()
.map ()

filter()
. take_while/.skip while

vV v v V

32

The Iterator trait defines a method . inspect () that takes a closure f as
an argument. The closure is called once for each element that the iterator
iterates over. Here’'s an example and Its output: 1
let v = vec![1, 5, 3, 2, 8]; 5
let s: i32 = v.iter() 3
.inspect(|x| printin!("{x}")) 2
.sum(); 3
T

println! ("The sum is {s}"); he sum is 19

Based on this description, which trait must the closure f implement?

A. FnOnce — The closure may be called at least one time

B. FnMut — The closure may be called multiple times and it may mutate its
environment

C. Fn — The closure may be called multiple times but may not mutate its environment

Find

let v = vec![1, 2, 3, 4];
println! ("{:?}", v.iter().find(|x| *xkx > 3));

Output: Some(4)

. Tind () works like our find_pred(): it takes a 1-argument predicate and
returns the first element that satisfies the predicate

. rfind () works similarly, but starts from the other end

34

Types are a little wonky

Setup:
» |f 1t isan Iterator that produces items of type T, then

it. find(f) requires T to be a closure that takes a &T argument and
returns a boo L

» AVec::<U>s .iter () method returns an iterator that produces items
of type &U

Together:
v.1lter().find(f) requires f to be a closure that takes a &&U argument
and returns a boo L

Hence the *x in: v.iter().find(|x| **xx > 3)

35

If an iterator returns elements of type T, then the closures passed
to .inspect() and .find() expect arguments of type &T.

In the common case where T Is actually a reference to some other type—i.e.,
T = &U—the closures end up requiring arguments of type &&U.

Imagine a different choice where the closures have arguments of type T
rather than &T. (Thus in the common case, closures have arguments of type

&U rather than &&U).

Would this approach work? Why or why not? Think about what happens
when T is String, for example.

A. It works [why?] B. It does not work [why not?]

Position

position() and .rposition() work similarly to .find() and .rfind() except they
return the index rather than the element

let v = vec!["Hello", "Hola", "&&a", "L »"];
let idx = v.iter()

.position(|s| !s.is_ascii())

.unwrap();
println!("Element {idx}: {}", vlidx]);

U

OQutput: Element 2: &7an

37

lterators have a . map () method that works by calling f on each element
being iterated over and returning the result of f rather than the element.

In other words, if the iterator 1t produces elements of type T, then
it.map(f) returns an iterator that produces elements of type U where f
takes an argument of type T and returns type U. [Note: T, not &T!]

If visa Vec: :<132>, which call to .map() returns an iterator over

numbers that are twice as large as the numbers in v? [Note: the call to .iter()]

// A // C
v.iter().map(|x| 2 * x); v.iter().map(|x| 2 * *xx);

// B // D. More than one of the
v.iter().map(|x]| 2 * *xXx); above (which ones?)

Map

let v = vec![1, 2, 3, 4];
let v2: Vec<_> = v.iter().map(|x| 2 * x).collect();

println! ("{v2:?}");

Automatic dereference
Output: [2, 4, 6, 8] due to arithmetic

.map () takes a 1-argument closure f and returns an iterator that applies f
to each element the iterator produces

39

Filtering an iterator

lterators have a . Tilter () method that takes a closure (or a function) as an
argument and returns a new iterator containing the elements for which the closure

returns true
fn main() {
let v = vec![1, -4, 3, 8, 2, -21, 6, -2, 9]:

Positive numbers:

println!("Positive numbers:");
for num in v.iter().filter(|x]| *xx > 0) {

println! (" {num}"):
I3 Multiples of 3:
println!("Multiples of 3:"); 3
for num in v.iter().filter(|x]| *xx % 3 == 0) { -21
println! (" {num}"); g

}

40

Take/skip while

take_while() works by returning (“taking”) each element from the iterator so long
as the predicate evaluates to true

.Skip_while() works similarly, except it skips the elements as long as the predicate
returns true

let v = vec![1, 2, -3, 4, -8, 1, 0];

let v2: Vec< > = v.iter().take while(|x| **xx > -1).collect();
let v3: Vec< > = v.iter().skip_while(|x]| *xx > -1).collect();
let v4: Vec< > = v.iter().filter(|x]| *xxx > -1).collect();

println!("v2: {v2:?}");
println!("v3: {v3:?}");
println!("v4: {v4:?}");

41

