
CS 241: Systems Programming
Lecture 23. Advanced Git

Fall 2025

Prof. Stephen Checkoway

1

Roadmap
Review of Git branches, merging, and rebasing

Conflict markers and resolution

Collaborative development using GitHub, specifically, pull requests

2

Branches
Visualize a project’s development as initially a linked list of commits

When a development track splits, a new branch is created

‣ This gives us a tree of commits

In Git, a branch is actually just a pointer to a leaf in the tree of development

Two or more branches can be merged together

‣ This gives a graph of commits

3

Why might you create a branch?

A. Fixing a specific bug

B. Adding a new feature

C. Creating a development branch so the code in your main branch always
compiles and works correctly

D. All of the above

4

Git branching
List all branches in the project

‣ git branch

Create a new branch

‣ git branch <branchname>

Switch to a branch

‣ git checkout <branchname>

Create and immediately switch

‣ git checkout –b <branchname>

Delete a branch

‣ git branch –d <branchname>

5

Using branches
Create and switch to a branch

6

$ git branch working

$ git checkout working
M README
Switched to branch 'working'

$ git branch
 main
* working

Stashing

7

Stashing
Working tree should be clean when switching branches

7

Stashing
Working tree should be clean when switching branches

Save/hide changes you're not ready to commit with git stash

‣ Pushes changes onto a stash stack

7

Stashing
Working tree should be clean when switching branches

Save/hide changes you're not ready to commit with git stash

‣ Pushes changes onto a stash stack

Recover changes later with git stash pop

7

Using branches

8

main

working

Using branches
Integrate changes back into main

9

$ git checkout main
Switched to branch ‘main'

$ git merge working
Merge made by the 'recursive' strategy.
 newfile.txt | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 newfile.txt

Before git merge

10

main

working

After git merge

11

main

working

Merged history

12

* cdd07b2 - (HEAD, main) Merge branch
'working'
|\
| * 1ccf9e7 - (working) Added a new file
* | 3637a76 - Second change
* | cf98d00 - First change
|/
* cf31a23 - Updated README to 2.0
* 2a8fc15 - Initial commit

Rebasing
Like merging, rebasing transfers changes from one branch to another

Does not create a new commit

Replays changes from current branch onto head of other branch

13

Before git rebase

14

main

working

After git rebase

15

’ ’ ’

main

working

git rebase
Powerful tool

Can change the commit order

Merge/split commits

Make fixes in earlier commits

‣ DO NOT DO ON PUSHED CHANGES OR PUBLIC BRANCHES

16

$ git rebase –i main

Why is it a bad idea to do git rebase on a public project?

A. If someone else is doing work based on a commit you rebase, it will be
hard for them to merge their work

B. Git rebase rewrites history, making it hard for other developers to
understand what happened in past commits

C. It can create a situation where different developers are working with
different commit histories of the same project

D. All of the above

17

Conflicts

18

Git conflict markers

19

$ cat foo.c
<<<<<<< HEAD
current content
=======
branch content
>>>>>>> newbranch
$ vim foo.c
$ git add foo.c
$ git rebase --continue

Pull requests with Github
Contributing changes to repositories on Github

Requests the owner of the code integrate your changes

20

Setup

GitHub

21

Setup

upstream 
(theirs)

22

Setup

upstream 
(theirs)

fork

23

Setup

upstream 
(theirs)

origin 
(yours)

fork

24

Setup

upstream 
(theirs)

origin 
(yours)

cl
on

e

fork

25

Setup

upstream 
(theirs)

origin 
(yours)

local 
(yours)

cl
on

e

fork

26

Setup

upstream 
(theirs)

origin 
(yours)

local 
(yours)

upstreamcl
on

e

fork

27

Setup

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstream

28

Contribute Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstream

29

Contribute Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreampush

30

Contribute Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreampush

31

Contribute Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreampush

pull
request

32

Contribute Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreampush

pull
request

33

Integrate Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstream

34

Integrate Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreamfet
ch

35

Integrate Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreamfet
ch

36

Integrate Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreampush fet
ch

37

Integrate Changes

upstream 
(theirs)

origin 
(yours)

local 
(yours)

origin
 upstreampush fet
ch

38

You want to contribute code to the Github project fancy/project (fancy
is the name of the owner, project is the name of the repo). You fork the
repo (producing student/project), commit your changes, and push to
student/project. Next, you make a pull request for fancy/project.

Which statement is true?

A. Your code is now integrated into fancy/project via merging

B. Your code is now integrated into fancy/project via rebasing

C. You have requested that your code be integrated into fancy/project,
but no changes have been made

D. You cannot make any additional commits until the pull request has been
accepted

39

origin upstream

local

main main

main

Branches

40

origin upstream

local

main main

main

$ git checkout -b feature

feature

41

origin upstream

local

main main

main

$ git commit

feature

42

origin upstream

local

main main

main

$ git push -u origin feature

feature

feature

43

origin upstream

local

main main

main
feature

feature
pull request

44

origin upstream

local

main main

main

Great idea, now can you do it more like this?

feature

feature
pull request

45

origin upstream

local

main main

main

$ git commit
$ git push

feature

feature

pull request

46

origin upstream

local

main
main

main

Awesome, but please update with new changes in main

feature

feature

pull request

47

origin upstream

local

main
main

main

$ git remote add upstream https://github.com/…
$ git fetch upstream main:main

feature

feature

pull request

48

origin upstream

local

main
main

main

$ git rebase main

feature

feature

pull request

WARNING: 
You may have 

to resolve conflicts.

49

origin upstream

local

main
main

main

$ git rebase main

feature

feature

pull request

50

origin upstream

local

main

main

$ git push -f origin main feature

feature

pull request

main

feature

51

origin upstream

local

main

main

feature

pull request

main

feature

Great. Please squash your commits.

52

origin upstream

local

main

main

$ git rebase –i main

feature

pull request

main

feature

53

origin upstream

local

main

main

$ git rebase –i main

feature

pull request

main

feature

54

origin upstream

local

main

main

$ git push -f origin feature

feature

pull request

main
feature

55

origin upstream

local

main

main
feature

pull request

main
feature

Perfect, I accept!

56

origin upstream

local

main

main

Time to Clean Up

feature

main
feature

57

origin upstream

local

main

main

I accept!

feature

main
feature

$ git fetch upstream main:main

58

origin upstream

local

main

main

I accept!

feature

main feature

$ git push origin main

59

origin upstream

local

main

main

I accept!

main feature

$ git checkout main  
$ git branch -d feature

60

origin upstream

local

main

main

I accept!

main

$ git push origin -d feature

61

After a PR is accepted, Github will ask you if you want to delete your feature
branch. If you say yes, which branches get deleted?

A. feature — the branch named feature in your local repo

B. origin/feature — the branch named feature in your remote repo

C. upstream/feature — the branch named feature in their remote repo

D. feature and origin/feature

E. feature, origin/feature, and upstream/feature

62

Now that origin/feature has been deleted, how do you delete
feature?

A. $ git delete feature

B. $ git delete -b feature

C. $ git branch -d feature

D. $ git push origin -d feature

E. I would google "delete a git branch" and then click on https://
stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-
locally-and-remotely like every other programmer

63

https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely
https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely
https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely

