CS 241: Systems Programming
Lecture 22. Signals

Fall 2025
Prof. Stephen Checkoway




Review: How does a process request that the kernel perform an action on
the process’s behalf?

. It calls a function in the kernel
. It calls a function in libc

. It makes a system call

. It makes a hypervisor call

. It switches the processor into kernel mode and then performs the action




Signals

Signals are a mechanism for the kernel to inform a process that some event
has occurred

> A single bit of information: event X occurred (possibly multiple times!)
System calls are for process — kernel communication

Signals are for (extremely limited) kernel = process communication



Common signals: signal(7)

SIGINT

SIGOQUIT
SIGILL

SIGABRT
SIGFPE

SIGKILL
SIGSEGV
SIGPIPE
SIGTERM
SIGCHLD
SIGSTOP
SIGCONT

— Interrupt from keyboard (ctrl-C on the terminal)
— Quit from keyboard (ctrl-\ on the terminal)

— lllegal instruction

— Signal from abort() (or assert() which calls abort())
— Floating point exception; integer divide by 0 on some systems
— Kill signhal, cannot be handled or ignored

— Segmentation fault

— Write to pipe with no readers

— Termination signal

— Child stopped or terminated

— Suspend the process (ctrl-Z on the terminal)

— Resume the process (fg or bg on terminal)

SIGWINCH — Terminal window resized

4



Similar sounding signals

SIGINT — Interrupt from keyboard (ctrl-C on the terminal)
SIGQUIT — Quit from keyboard (ctrl-\ on the terminal)
SIGKILL — Kill signal, cannot be handled or ignored
SIGTERM — lermination signal

SIGSTOP — Suspend the process (ctrl-Z on the terminal)

SIGINT and SIGQUIT should only come from the user typing at the terminal

If one process wants to stop another, it should (typically) request the process
terminate via SIGTERM and, if after a few seconds it hasn't, use SIGKILL

SIGSTOP is about job control, not about terminating processes



----------------------
\g IS

S i g n al W O rkfl OW ’ Signal Disposition

Handler

Signal Signal
: : . lgnore :
generation delivery : :

Default
action

Event occurs

Request from
process




Event or request

Some event occurs
» Ctrl-C, or a child process exits or ...

A process requests a signal be sent to itself or another process
> The kill system call specifies a signal to send

m —

Signal Signal
generation delivery

Request
Default
action




Signal generation

The kernel maps the event/request to a signal number

The kernel sets a bit indicating the particular signal is pending (meaning it
will be delivered) for the target process

m —

Signal Signal
generation delivery
Default

action




Signal delivery

Before returning to a user process after a system call or context switch, the
kernel checks the set of pending signals and the set of signals the process is
blocking

If a pending signal is not blocked, signal delivery occurs

Action taken depends on the signal disposition

> |f a sighal handler has been registered, it is called by the kernel in the
context of the process

> |f the particular signal is ignored, nothing happens

. . Handler
» Otherwise the default action occurs m
_ generation delivery
Default action
> Some signals are ignored (like SIGCHLD) Deiaul

> Some cause the process to be terminated (like SIGINT)
9



Signal handlers

Signal handlers are just functions that are called asynchronously in response
to a signal

Signhal handlers run in the context of the process and have access to all of
the process’s memory

Signal handlers are extremely limited in what they can safely do

m —
Signal

Signal
generation delivery
Default

action

10



Blocked signals

Processes can request that delivery of particular signals be blocked

When a blocked signal is generated, it remains pending until the signal Is
unblocked
> When a signal is unblocked and is pending, it is delivered immediately

Typically, a process will block signals for a short period of time and then
unblock

If a process never wants to receive a signal, it can set the signal’s disposition
to ignored

11



Signal delivery delay

Signal delivery is deferred until the kernel next returns to the process
> At the completion of a system call
> The next time the process is scheduled to run

Some system calls can be interrupted, others cannot
» System calls like read(2) and write(2) can read/write less than requested
when interrupted by a signal; return value reflects this
> Other calls may return -1 and set errno to EINTR to indicate it was

interrupted

Only one of each (standard) signal may be pending at a time

12



Consider the following sequence of events
> The process installs a signal handler for SIGINT
> The process masks (blocks) SIGINT
> The user presses ctrl-c twice
> The process unmasks (unblocks) SIGINT

Which of the following is correct?
A. The handler never runs

B. The handler runs the first time ctrl-c is pressed
C. The handler runs both times ctrl-c is pressed

D. The handler runs once after the signal is unmasked

E. The handler runs twice after the signal is unmasked



Sending a signal



Sending a signal

From the shell: kil1l1(1) orkillall (1)
> S$ kill -9 1234 # Send SIGKILL (signal 9) to PID 1234
» S kill -1 # List all of the signals

14



Sending a signal

From the shell: kil1l1(1) orkillall (1)
> S$ kill -9 1234 # Send SIGKILL (signal 9) to PID 1234
» S kill -1 # List all of the signals

int kill(pid t pid, int siqg);
> Sends signal sig to process pid
> Different behavior depending on pid < 0O, pid =0, pid >0, sig =0, sig>0

14



Sending a signal

Fromthe shell: kill (1) orkillall(1)

> S$ kill -9 1234 # Send SIGKILL (signal 9) to PID 1234
» S kill -1 # List all of the signals

int kill(pid t pid, int siqg);
> Sends signal sig to process pid
> Different behavior depending on pid < 0O, pid =0, pid >0, sig =0, sig>0

int railise(int siqg);
» Sends signal sig to the own process

14



If a process is sent a signal using Kill, will that process terminate?

A. Yes

B. Yes If there are no errors

C. That depends on the signal

D. No




Signal handler limitations

Signal handlers run asynchronously compared to the rest of the code

There is a real danger of a signal handler modifying data that the main

program Is currently accessing
> This Iis undefined behavior

Signal handlers have extreme limitations:

> No allocating memory
> A very restricted set of system calls are allowed

> No touching data other code can use nonatomically

16



“Safe” signal handlers

The only really safe signal handler (this is a slight overstatement) is one that atomically sets a bool

Pseudo code:
received_signal = false

fn handler():

fn main():
register handler as signal handler for SIGINT
Loop:
let input = read_from_stdin()
interrupted = atomically read received signal and set 1t to false
1f 1nterrupted:
handle the Ctrl-C

17



Nonatomic operations

Consider the code like x += 1;

The processor has to perform three concrete actions
> Load the current value of x from memory

> Add 1 to that value
> Store the new value of x back into memory

This process Is not atomic
> E.g., the process could be interrupted by a signal after loading x from

memory but before storing the new value back, if the signal handler
modified X, then its modification would be overwritten once the main

code Is running again

18



Signal handlers can be interrupted by signals which means that the signal
handler can be run in response to a signal while it is already running!

Does the following pseudocode for a signal handler that counts how many
times the handler is called work correctly”? Why or why not?

count = 0
fn handler():
count += 1

A. Yes
B. No

C. It depends




Atomic operations

Modern processors all have support for performing atomic operations on
basic types like bools and integers

Programming languages have varying levels of support for atomics (C only
added support in 2011; for reference C is from 1972!)

Rust has fantastic support for atomic operations

20



AtomicBool

use std::sync::atomic::{AtomicBool, Ordering};

// Create a new AtomicBool initially set to false.
let val = AtomicBool::new(false):

// Atomically sets val to true
val.store(true, Ordering::Relaxed);

// Atomically Lloads val; assigns the result to X.
let x = val.load(Ordering: :Relaxed);

// Atomically sets val to false and returns the old value of val
let old = val.swap(false, Ordering::Relaxed);

21



Not mutable!

use std::sync::atomic::{AtomicBool, Ordering};

// Create a new AtomicBool initially set to false.
let val = AtomicBool::new(false):

val isn’t mutable
// Atomically sets val to true

val.store(true, Ordering::Relaxed);

_ This modifies it! _
// Atomically toaus vdati, assigns the result to X.

let x = val.load(0Ordering::Relaxed);

// Atomically sets val to false and returns the old value of val
let old = val.swap(false, Ordering::Relaxed);

As does this!

22



Why do you think we are allowed to modify AtomicBools that aren’t set to
mutable”?

A. AtomicBools are part of unsafe Rust

B. Because a bool only has two possible values, it’s safe to let multiple
pieces of code operate on it simultaneously

. Because every operation on an AtomicBool is atomic, it’s safe to let
multiple pieces of code operate on it simultaneously

. Some other reason




Mutating nonmutable data

Since every operation on an AtomicBool is atomic, it’s safe to let multiple
pieces of code operate on it simultaneously

Put another way, modification through shared references is safe

Consequence: We can use global, nonmutable atomic variables and modify
the values, e.g., from a signal handler

24



Ordering

Each of the .store(), .load(), and .swap() methods take an Ordering enum

The Ordering variant used dictates how the hardware relates the atomic
operation with other memory reads (loads) and writes (stores)

This isn’t relevant for our use case so we always use Ordering::Relaxed

25



Safe signal handling in Rust

1. Create a global AtomicBool variable for each signal of interest

2. Create a signal handler function that sets the appropriate AtomicBool for
the received signal and does nothing else

3. Use libc::sigaction() to register the signal handler

20



The AtomicBool and handler

use std::sync::atomic::{AtomicBool, Ordering};
static INTERRUPTED: AtomicBool = AtomicBool::new(false);

extern "C" fn handler(_sig: libc::c_int) <
INTERRUPTED.store(true, Ordering::Relaxed);
}

extern “C” tells rustc to compile the
function in the manner expected by C
code since that’s what the kernel
expects too
27



Setting the signal handler

unsafe {
let action = libc::sigaction {
sa_sigaction: handler as libc::sighandler_t,
. .std::mem::zeroed()

i
Set the sa_sigaction field to handler (cast to a sighandler_t)
Set the rest of the fields to zero

if libc::sigaction(1libc::SIGINT, &action, std::ptr::null_mut()) < 0 {
return Err(io::Error::last os error()):
s

Call sigaction(), passing the action structure and check the
return value

28



Changing the signal disposition

In general, we call sigaction() to change the signal disposition to one of

» Call a handler
> |gnore the signal Sets the disposition to ignored
» Perform the default action Use SIG_DFL to set the disposition to the default action

unsafe {
let action = libc::sigaction {
sa_silgaction: Llibc::SIG_IGN,
..std::mem::zeroed()

b

if libc::sigaction(1libc::SIGINT, &action, std::ptr::null_mut()) < 0 {
return Err(io::Error::last os error());
I3

29



