
CS 241: Systems Programming
Lecture 21. Lifetimes

Fall 2025

Prof. Stephen Checkoway

1

Data must live longer than references

2

Data must live longer than references
fn main() {
 let some_ref: &i32 = {
 let x = 28;
 &x
 };
 println!("The value of x is {some_ref}");
}

2

Data must live longer than references
fn main() {
 let some_ref: &i32 = {
 let x = 28;
 &x
 };
 println!("The value of x is {some_ref}");
}
error[E0597]: `x` does not live long enough
 --> lifetimes.rs:4:9
 |
2 | let some_ref: &i32 = {
 | -------- borrow later stored here
3 | let x = 28;
 | - binding `x` declared here
4 | &x
 | ^^ borrowed value does not live long enough
5 | };
 | - `x` dropped here while still borrowed

2

Checking references in a function
Inside a single function, the BorrowChecker checks that all data outlive
references to the data

The lifetime of data is how long the data will live

‣ until the end of the function

‣ until the end of a block

‣ until the end of the program

‣ until it is moved (e.g., by calling a function that takes ownership)

The lifetime of a reference is from its creation until its last use

3

Checking references between functions
Passing a reference to a function or returning one makes it more
complicated to check lifetimes

Options

‣ Whole program analysis

‣ Annotations on functions specifying lifetime information

Whole-program analysis has some drawbacks (including compilation time
and nonlocal errors)

4

Consider this function which returns a reference to an i32 named x

fn foo() -> &i32 {
 // Some code here
 &x
}

How long must x live for this code to avoid having a reference to data that is
no longer alive?

A. Until the end of foo

B. Until the end of the block x is
declared in

C. Until the end of the program

D. Until x is moved

5

Returning a reference
We can’t return a reference to a local variable

We must return a reference to something else

‣ A global variable

‣ A literal value (like &83 or "a literal string")

‣ Some data passed by reference to the function

6

This is the interesting case!

Trying to return a reference

7

Trying to return a reference
This function returns a string literal, but it doesn’t actually compile
fn day_of_week(day: i32) -> &str {
 match day {
 0 => "Sunday",
 1 => "Monday",
 2 => "Tuesday",
 3 => "Wednesday",
 4 => "Thursday",
 5 => "Friday",
 6 => "Saturday",
 _ => panic!("Not a valid day of the week!"),
 }
}

7

Trying to return a reference
This function returns a string literal, but it doesn’t actually compile
fn day_of_week(day: i32) -> &str {
 match day {
 0 => "Sunday",
 1 => "Monday",
 2 => "Tuesday",
 3 => "Wednesday",
 4 => "Thursday",
 5 => "Friday",
 6 => "Saturday",
 _ => panic!("Not a valid day of the week!"),
 }
}
error[E0106]: missing lifetime specifier
 --> lifetimes.rs:9:29
 |
9 | fn day_of_week(day: i32) -> &str {
 | ^ expected named lifetime parameter7

'static lifetime specifier
error[E0106]: missing lifetime specifier
 --> lifetimes.rs:9:29
 |
9 | fn day_of_week(day: i32) -> &str {
 | ^ expected named lifetime
parameter
 |
 = help: this function's return type contains a borrowed
value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime
 |
9 | fn day_of_week(day: i32) -> &'static str {
 | +++++++

8

Trying to return a reference
fn day_of_week(day: i32) -> &'static str {
 match day {
 0 => "Sunday",
 1 => "Monday",
 2 => "Tuesday",
 3 => "Wednesday",
 4 => "Thursday",
 5 => "Friday",
 6 => "Saturday",
 _ => panic!("Not a valid day of the week!"),
 }
}

The 'static in &'static str is a lifetime specifier that indicates the reference is valid
until the end of the program 9

Returning a reference to non-string literals
fn this_seems_useless_but_it_works() -> &'static i32 {
 &83
}

Literals are valid for the entire program

10

Returning a reference to a global variable
static SOME_GLOBAL_INT: i32 = 42;

fn foo(which: bool) -> &'static i32 {
 static GLOBAL_BUT_ONLY_ACCESSIBLE_IN_FOO: i32 = 8;
 if which {
 &SOME_GLOBAL_INT
 } else {
 &GLOBAL_BUT_ONLY_ACCESSIBLE_IN_FOO
 }
}

fn main() {
 println!("{} {}", foo(false), foo(true));
}

11

References based on arguments
 = help: this function's return type contains a
borrowed value, but there is no value for it to be
borrowed from

The error message’s help hints that to return a non 'static reference, the
function needs some other data to base the reference on

That other data must come from function arguments

12

Consider this function which returns a reference to a &str

fn foo(arg: &str) -> &str {
 todo!()
}

What can foo return?

A. Only string literals

B. arg or string literals

C. string literals or slices of string
literals

D. arg or slices of arg

E. arg, slices of arg, string literals,
or slices of string literals

13

Reference arguments
fn foo(arg: &i32) -> &i32

Consider this code

fn main() {
 let r = {
 let x = 1005;
 foo(&x)
 };
 println!("{r}");
}
If this code ran, would it be safe? Could foo() return a reference that doesn’t
live long enough?

14

Lifetime parameters
Lifetime parameters are a way to relate the lifetimes of returned
references to the lifetimes of reference arguments

Lifetime parameters

‣ Start with a ' (e.g., 'a, 'b, 'c, 'foo)

‣ Are specified along with generic arguments inside <angle brackets>

15

Lifetime parameter example

fn foo<'a>(arg: &'a i32) -> &'a i32 {
 todo!()
}

When foo(&x) is called, Rust uses the lifetime of x for 'a so the returned
reference can be used as long as x is alive

16

Declares a lifetime
parameter

Specifies that arg
has the lifetime 'a

Specifies that the return
value lives at least as long
as lifetime 'a

fn foo<'a>(arg: &'a i32) -> &'a i32 { /* … */ }

fn main() {
 let r: &i32 = {
 let x = 1005;
 foo(&x)
 };
 println!("{r}");
}

Is this code valid? Put another way, can the compiler guarantee that the r
reference doesn’t outlive the data it points to? Why or why not?
A. The code is valid

B. The code is invalid

C. It depends on what foo returns

17

fn foo<'a>(arg: &'a i32) -> &'a i32 { /* … */ }

fn main() {
 let r: &i32 = { foo(&1005) };
 println!("{r}");
}

Can the compiler guarantee that the r reference doesn’t outlive the data it
points to? What is the lifetime of the returned reference?

A. Yes. The lifetime is until the end
of main

B. Yes. The lifetime is until the end
of the program

C. No. The lifetime is until the end
of block foo() is called in which
isn’t long enough

D. No. The lifetime of &1005 isn’t
'static

18

Returning a reference based on a reference
argument

19

Returning a reference based on a reference
argument
fn first_word<'a>(s: &'a str) -> &'a str {

19

Returning a reference based on a reference
argument
fn first_word<'a>(s: &'a str) -> &'a str {
 if let Some(idx) = s.find(' ') {
 &s[..idx]
 } else {
 s
 }
}

19

Returning a reference based on a reference
argument
fn first_word<'a>(s: &'a str) -> &'a str {
 if let Some(idx) = s.find(' ') {
 &s[..idx]
 } else {
 s
 }
}

19

In both cases, first_word() returns a
reference (a string slice) that is valid for
as long as the string pointed to by s is
valid

Returning a reference based on a reference
argument
fn first_word<'a>(s: &'a str) -> &'a str {
 if let Some(idx) = s.find(' ') {
 &s[..idx]
 } else {
 s
 }
}

fn main() {
 let sentence = String::from("This is complicated!");
 let word = first_word(&sentence);
 println!("{word}");
}

19

In both cases, first_word() returns a
reference (a string slice) that is valid for
as long as the string pointed to by s is
valid

Returning reference to a struct member

20

Returning reference to a struct member
struct Foo {
 name: String,
}

20

Returning reference to a struct member
struct Foo {
 name: String,
}

impl Foo {
 fn name<'a>(&'a self) -> &'a str {
 &self.name
 }

20

Returning reference to a struct member
struct Foo {
 name: String,
}

impl Foo {
 fn name<'a>(&'a self) -> &'a str {
 &self.name
 }

 fn name_mut<'a>(&'a mut self) -> &'a mut String {
 &mut self.name
 }
}

20

Returning reference to a struct member
struct Foo {
 name: String,
}

impl Foo {
 fn name<'a>(&'a self) -> &'a str {
 &self.name
 }

 fn name_mut<'a>(&'a mut self) -> &'a mut String {
 &mut self.name
 }
}

20

We can return mutable
references

Returning reference to a struct member
struct Foo {
 name: String,
}

impl Foo {
 fn name<'a>(&'a self) -> &'a str {
 &self.name
 }

 fn name_mut<'a>(&'a mut self) -> &'a mut String {
 &mut self.name
 }
}

fn main() {
 let mut x = Foo { name: String::from("Thing") };
 x.name_mut().push_str(" One");
 println!("{}", x.name());
} 20

We can return mutable
references

fn append<'a,'b>(target: &'a mut String, s: &’b str)
 -> &'X mut String
{
 target.push_str(s);
 target
}

What lifetime specifier does X need to be?

A. 'a

B. 'b

C. ‘static

D. Something else

21

Multiple lifetime parameters
fn append<'a, 'b>(target: &'a mut String, s: &'b str) -> &'a mut String {
 target.push_str(s);
 target
}

fn main() {
 let mut s = String::new();

 append(append(&mut s, "foo"), "bar");
 println!("{s}");
}

Prints out: foobar

22

Using the same lifetime parameter for multiple
reference parameters
fn smallest<'a>(x: &'a mut i32, y: &'a mut i32) -> &'a mut i32 {
 if *x < *y {
 x
 } else {
 y
 }
}

When called, 'a will be the smallest lifetime satisfied by both x and y

The return value must live as long as both of them

23

Implicit lifetime parameters or lifetime elision

When the function has one reference argument and one reference return
value, no explicit lifetime parameter is required

‣ fn foo(x: &i32) -> &i32

‣ The lifetime of the return value is the same as the lifetime of the

argument

If the function is a method with a &self or &mut self parameter, then the
lifetime of the returned references is the lifetime of self

Otherwise the lifetime parameters must be specified

24

first_word with lifetime elision
fn first_word(s: &str) -> &str {
 if let Some(idx) = s.find(' ') {
 &s[..idx]
 } else {
 s
 }
}

25

Methods with lifetime elision
struct Foo {
 name: String,
}

impl Foo {
 fn name(&self) -> &str {
 &self.name
 }

 fn name_mut(&mut self) -> &mut String {
 &mut self.name
 }
}

26

Which of these methods requires explicit lifetimes?

A. fn foo(i: &i32) -> &i32

B. fn foo(i: &i32, j: &i32) -> &i32

C. fn foo(&self) -> &i32

D. None of the above

27

Structs containing references
struct CounterRef<'a> {
 counter: &'a mut usize
}

impl<'a> CounterRef<'a> {
 fn count_zeros(&mut self,
 nums: &[i32])
 {
 for num in nums {
 if *num == 0 {
 *self.counter += 1;
 }
 }
 }
}

fn main() {
 let mut count: usize = 0;
 let mut cr = CounterRef {
 counter: &mut count
 };

 cr.count_zeros(&[0, 3, 0, 4]);
 cr.count_zeros(&[-1, 0, 1, 2]);
 println!("{count}");
}

28

Structs containing references
struct CounterRef<'a> {
 counter: &'a mut usize
}

impl<'a> CounterRef<'a> {
 fn count_zeros(&mut self,
 nums: &[i32])
 {
 for num in nums {
 if *num == 0 {
 *self.counter += 1;
 }
 }
 }
}

fn main() {
 let mut count: usize = 0;
 let mut cr = CounterRef {
 counter: &mut count
 };

 cr.count_zeros(&[0, 3, 0, 4]);
 cr.count_zeros(&[-1, 0, 1, 2]);
 println!("{count}");
}

29

What will this print?

struct CounterRef<'a> {
 counter: &'a mut usize
}

impl<'a> CounterRef<'a> {
 fn count_zeros(&mut self,
 nums: &[i32])
 {
 for num in nums {
 if *num == 0 {
 *self.counter += 1;
 }
 }
 }
}

fn main() {
 let mut count: usize = 0;
 let mut cr = CounterRef {
 counter: &mut count
 };

 cr.count_zeros(&[0, 3, 0, 4]);
 cr.count_zeros(&[-1, 0, 1, 2]);
 println!("{count}");
}

A. 1

B. 2

C. 3

D. Does not compile
30

