CS 241: Systems Programming
L ecture 21. Lifetimes

Fall 2025
Prof. Stephen Checkoway

Data must live longer than references

Data must live longer than references

fn main() {
let some ref: &i32 = {
let x = 28;
&X
}.

println!("The value of x is {some_ref}");
}

Data must live longer than references

fn main() {
let some ref: &i32 = {
let x = 28;
&X
b
println! ("The value of x is {some_ref}");
}
: X does not live long enough
——> lifetimes.rs:4:9

2 | let some_ref: &i32 = {
| m—————— borrow later stored here
3 | let x = 28;
| - binding x declared here
4 | &X
|
5 | s
|

- X dropped here while still borrowed

2

Checking references in a function

Inside a single function, the BorrowChecker checks that all data outlive
references to the data

The lifetime of data is how long the data will live
> until the end of the function
> until the end of a block
> until the end of the program
> until it is moved (e.qg., by calling a function that takes ownership)

The lifetime of a reference is from its creation until its last use

Checking references between functions

Passing a reference to a function or returning one makes it more
complicated to check lifetimes

Options
> Whole program analysis
> Annotations on functions specifying lifetime information

Whole-program analysis has some drawbacks (including compilation time
and nonlocal errors)

Consider this function which returns a reference to an 132 named X
fn foo() — &i32 {

// Some code here

&X

}

How long must X live for this code to avoid having a reference to data that is
no longer alive?

A. Until the end of foo C. Until the end of the program

B. Until the end of the block x Is D. Until x Is moved
declared In

Returning a reference

We can’t return a reference to a local variable

We must return a reference to something else
> A global variable
> A literal value (like &83 or ''a literal string")

> Some data passed by reference to the function

This is the interesting case!

Trying to return a reference

Trying to return a reference

This function returns a string literal, but it doesn’t actually compile
fn day of week(day: 132) —> &str {

match day {
® => "Sunday",
1 => "Monday",
2 => "Tuesday",
3 => "Wednesday",
4 => "Thursday",
5 => "Friday",
6 => "Saturday",

=> panic!("Not a valid day of the week!"),

Trying to return a reference

This function returns a string literal, but it doesn’t actually compile
fn day of week(day: 132) —> &str {

match day {
® => "Sunday",
1 => "Monday",
2 => "Tuesday",
3 => "Wednesday",
4 => "Thursday",
5 => "Friday",
6 => "Saturday",

=> panic!("Not a valid day of the week!"),

: missing lifetime specifier
—=> lifetimes.rs:9:29

|
9 | fn day_of_week(day: i32) —> &str {

| 1

'static lifetime specifier

: missing lifetime specifier
——> lifetimes.rs:9:29

|
9 | fn day_of_week(day: 1i32) —> &str 1

= help: this function's return type contains a borrowed
value, but there 1s no value for 1t to be borrowed from
: consider using the " 'static 1lifetime
|

9 | fn day_of_week(day: i32) —> &'static str {
| +++++++

Trying to return a reference

fn day of week(day: i32) —> &'static str {

match day {
® => "Sunday",
1 => "Monday",
2 => "Tuesday",
3 => "Wednesday",
4 => "Thursday",
5 => "Friday",
6 => "Saturday",

=> panic!("Not a valid day of the week!"),

The 'static in &'static str is a lifetime specifier that indicates the reference is valid
until the end of the program 9

Returning a reference to non-string literals

fn this seems useless but it works() —> &'static i32 {
&383
s

Literals are valid for the entire program

10

Returning a reference to a global variable

static SOME_GLOBAL_INT: 132 = 42;

fn foo(which: bool) —> &'static 132 {
static GLOBAL BUT ONLY ACCESSIBLE IN FOO: 132 = 8;
if which {
&SOME GLOBAL INT

} else {
&GLOBAL BUT ONLY ACCESSIBLE IN FOO
+

}

fn main() {
println!("{} {}", foo(false), foo(true));
}

11

References based on arguments

= help: this function's return type contains a
borrowed value, but there 1s no value for 1t to be
borrowed from

The error message’s help hints that to return a non 'static reference, the
function needs some other data to base the reference on

That other data must come from function arguments

12

Consider this function which returns a reference to a &str
fn foo(arg: &str) —> &str A

todo! ()
s

What can foo return?

A. Only string literals D. arg or slices of arg

B. arg or string literals E. arg, slices of arg, string literals,
or slices of string literals

C. string literals or slices of string
literals

Reference arguments

fn foo(arg: &i32) —> &i32

Consider this code
fn main() {
let r = {
let x = 1005;
foo (&x)
s
printin!("{r}");
s
If this code ran, would it be safe? Could foo() return a reference that doesn’t
live long enough?

14

Lifetime parameters

Lifetime parameters are a way to relate the lifetimes of returned
references to the lifetimes of reference arguments

Lifetime parameters

» Start witha ' (e.g., 'a, 'b, 'c, 'foo)
> Are specified along with generic arguments inside <angle brackets>

15

Lifetime parameter example

Declares a lifetime
parameter

fn foo<'a>(arg: &'a i32) —> &'a 132 A
todo! ()
}

Specifies that arg Specifies that the return
has the lifetime 'a value lives at least as long
as lifetime 'a

When foo (&x) is called, Rust uses the lifetime of x for 'a so the returned
reference can be used as long as X is alive

16

fn foo<'a>(arg: &'a i32) —> &'a 132 { /* .. %/ }

fn main() {
let r: &i32 {
let x = 1005;
)

foo (&x

}i
printin! ("{r}");

}

Is this code valid? Put another way, can the compiler guarantee that the r
reference doesn’t outlive the data it points to”? Why or why not?

A. The code is valid C. It depends on what foo returns

B. The code is invalid

fn foo<'a>(arg: &'a i32) —> &'a 132 { /* .. %/ }

fn main() {
let r: &i32 = { foo(&1005) };
printin! ("{r}");

}

Can the compiler guarantee that the r reference doesn’t outlive the data it
points to? What is the lifetime of the returned reference?

A. Yes. The lifetime is until the end C. No. The lifetime is until the end
of main of block foo() is called in which
Isn’t long enough
B. Yes. The lifetime is until the end

of the program D. No. The lifetime of &1005 isn’t
'static

Returning a reference based on a reference
argument

19

Returning a reference based on a reference
argument

fn first word<'a>(s: &'a str) —> &'a str {

19

Returning a reference based on a reference
argument

fn first word<'a>(s: &'a str) —> &'a str {
if let Some(idx) = s.find("' ') {
&s[..idx]
} else {

S
¥

19

Returning a reference based on a reference
argument

fn first word<'a>(s: &'a str) —> &'a str {
if let Some(idx) = s.find("' ') A

&s[..1idx]
} else { .
In both cases, first_word() returns a
S
! reference (a string slice) that is valid for
as long as the string pointed to by s is

s valid

19

Returning a reference based on a reference
argument

fn first word<'a>(s: &'a str) —> &'a str {
if let Some(idx) = s.find(' ') {

&s[..idx]
} else { .
In both cases, first_word() returns a
S
! reference (a string slice) that is valid for
as long as the string pointed to by s is
} valid

fn main() {
let sentence = String::from("This is complicated!");

let word = first word(&sentence);
printin! ("{word}");

19

Returning reference to a struct member

20

Returning reference to a struct member

struct Foo {
name: String,

}

20

Returning reference to a struct member

struct Foo {
name: String,

}

impl Foo {
fn name<'a>(&'a self) —> &'a str {
&self.name
¥

20

Returning reference to a struct member

struct Foo {
name: String,
}

impl Foo {
fn name<'a>(&'a self) —> &'a str {
&self.name
¥

fn name_mut<'a>(&'a mut self) —> &'a mut String A
&mut self.name
}

20

Returning reference to a struct member

struct Foo {
name: String,

+
impl Foo {
fn name<'a>(&'a self) —> &'a str { We can return mutable
&self.name references
+

fn name_mut<'a>(&'a mut self) —> &'a mut String A
&mut self.name
}

20

Returning reference to a struct member

struct Foo {
name: String,

I3
impl Foo {
fn name<'a>(&'a self) —> &'a str { We can return mutable
&self.name references
I3
fn name_mut<'a>(&'a mut self) —> &'a mut String A
&mut self.name
Iy
}

fn main() {
let mut x = Foo { name: String::from("Thing") };
X.name_mut().push _str(" One");
println! ("{}", x.name());

h 20

fn append<'a, 'b>(target: &'a mut String, s: &'b str)
—> &'X mut String

{
target.push_str(s);
target

}

What lifetime specifier does X need to be?

A. 'a D. Something else
B. 'b

C. ‘static

Multiple lifetime parameters

fn append<'a, 'b>(target: &'a mut String, s: &'b str) —> &'a mut String A
target.push_str(s);
target

}

fn main() {
let mut s = String::new();

append(append(&mut s, "foo"), "bar");
println!("{s}");
I3

Prints out: foobar

22

Using the same lifetime parameter for multiple
reference parameters

fn smallest<'a>(x: &'a mut 132, y: &'a mut 132) — &'a mut 132 {
if kx < xy {

X
} else {

y
}
}

When called, 'a will be the smallest lifetime satisfied by both x and y

The return value must live as long as both of them

23

Implicit lifetime parameters or lifetime elision

When the function has one reference argument and one reference return
value, no explicit lifetime parameter is required
» fn foo(x: &132) —> &i32
> The lifetime of the return value is the same as the lifetime of the
argument

If the function is a method with a &se LT or &mut self parameter, then the
ifetime of the returned references is the lifetime of se LT

Otherwise the lifetime parameters must be specified

24

first word with lifetime elision

fn first word(s: &str) — &str {
if let Some(idx) = s.find("' ") {
&s[..idx]
} else {

S
¥

25

Methods with lifetime elision

struct Foo {
name: String,
}

impl Foo {
fn name(&self) — &str {
&self.name
+

fn name_mut(&mut self) —> &mut String A
&mut self.name
}

20

Which of these methods requires explicit lifetimes?

A. fn foo(i: &i32) -> &I32 D. None of the above

B. fn foo(i: &i32, j: &i32) -> &i32

C. fn foo(&self) -> &i32

Structs containing references

struct CounterRef<'a> {
counter: &'a mut usize
+

impl<'a> CounterRef<'a> {
fn count zeros(&mut self,
nums: &[132])

{
for num in nums {
if sknum == 0 {
xself.counter += 1;
s
s
s

¥

28

Structs containing references

struct CounterRef<'a> {
counter: &'a mut usize
+

impl<'a> CounterRef<'a> {
fn count zeros(&mut self,
nums: &[132])

1
for num in nums {
if sknum == 0 {
xself.counter += 1;
F
+
+

29

fn main() {
let mut count: usize = 0;
let mut cr = CounterRef {
counter: &mut count
r;

cr.count_zeros(&[0, 3, 0, 4]);
cr.count_zeros(&[-1, 0, 1, 2]);
println! ("{count}");

What will this print? fn main() {

struct CounterRef<'a> { let mut count: usize = 0;
counter: &'a mut usize let mut cr = CounterRef A

1 counter: &mut count

s
impl<'a> CounterRef<'a> {
n Count=zeros(&mut Self’ CF.COunt=ZeFOS(&[@, 3, @, 4]);

nums: &[i321) cr.count_zeros(&[-1, 0, 1, 2]);
{ printin! ("{count}");

for num in nums {
if sknum == 0 {
xself.counter += 1;
¥

C. 3

D. Does not compile

