CS 241: Systems Programming
_ecture 19. System Calis |l

Fall 2025
Prof. Stephen Checkoway

Creating a new process

Two schools of thought
> Windows way: single system call
e CreateProcess("calc.exe", /* other params */)
> Unix way: two (or more) system calls
* Create a copy of the currently running process: fork ()
 The copy transforms itself into a new process:
execve("/usr/bin/bc", args, env)

Process IDs

Every Unix process has a unigue identifier
> Integer, used to index into a kernel process table
» S ps ax # Print a list of all running processes and their PIDs

pid t getpid(void);
std::process::id() —> u32;

Every process has a parent process
> processes are "reparented” to the init process if their parent already
exited

pid t getppid(void);
std::0S::unix::process::parent_1d() — u32;

3

Creating a new process

#include <unistd.h>
#include <sys/types.h>

pid t fork(void);

Creates an (almost) identical copy of the running program with one big
exception

> Returns 0 to the child but PID of child to the parent
> -1 on error and sets errno

This includes a copy of memory, code, file descriptors and most other bit of
process state (but not all)

What will print out after running this code if the child’s PID is 57 Include
output from all processes.

fn main() A. “I’'m the child

let pid = unsafe { libc::fork() };
1f pid == 0 {

println! ("I'm the child");
} else {

println! ("Child is {pid}");

B. “Child is 5”
C. “Child is 0”

) D. More than 1 of the above

£ main() Parent
P let pi1d = unsafe { libc::fork() }; m
1f pid == 0 { .
println! ("I'm the child");
} else {
println! ("Child is {pid}");

}

£n main() { Parent

let pid = unsafe { libc::fork() };
—P» if pid == 0 {
println! ("I'm the child");
} else {
println! ("Child is {pid}");

'
}
fn main() { Child
let pid = unsafe { libc::fork() };
—P 1f pid == 0 { m
println!("I'm the child"); pid 0
} else {

println! ("Child is {pid}");
;

In which order will the two statements be printed?

A. First the parent and then

tn main() A the child

let pid = unsafe { libc::fork() };
1f pid == 0 {

println! ("I'm the child");
} else {

println! ("Child is {pid}");

B. First the child and then
the parent

C. In either order

'

fn whoami(s: &str) {
let pid = std::process::id();
let ppid = std::os::unix::process::parent_id();
println! ("{s:<8} pid={pid:<8} ppid={ppid}");

}

fn main() —> io::Result<()> {

Ok(())

fn whoami(s: &str) {
let pid = std::process::id();
let ppid = std::os::unix::process::parent_id();
println! ("{s:<8} pid={pid:<8} ppid={ppid}");

}

fn main() —> io::Result<()> {
whoami("Prefork:"):

Prefork: pid=88361 ppid=86581

Ok(())

10

fn whoami(s: &str) {
let pid = std::process::id();
let ppid = std::os::unix::process::parent_id();
println! ("{s:<8} pid={pid:<8} ppid={ppid}");

}

fn main() —> io::Result<()> {
whoami("Prefork:"):
let pid = unsafe { libc::fork() };

Prefork: pid=88361 ppid=86581

Ok(())

11

fn whoami(s: &str) {
let pid = std::process::id();
let ppid = std::os::unix::process::parent_id();
println! ("{s:<8} pid={pid:<8} ppid={ppid}");

}

fn main() —> io::Result<()> {
whoami("Prefork:"):
let pid = unsafe { libc::fork() };
if pid < 0 {
return Err(io::Error::last os error());
+

Prefork: pid=88361 ppid=86581

Ok(())

12

fn whoami(s: &str) {
let pid = std::process::id();
let ppid = std::os::unix::process::parent_id();
println! ("{s:<8} pid={pid:<8} ppid={ppid}");

}

fn main() —> io::Result<()> {
whoami("Prefork:"):
let pid = unsafe { libc::fork() };
if pid < 0 {
return Err(io::Error::last os error());

}
if pid == 0 {
whoami("Child:");
} else { Prefork: pid=88361 pp1d=86581
}. whoami("Parent:"); Parent: pid=88361 ppid=86581

Child: pid=88362 ppid=88361

Ok(())

13

fork/exec

Usually used together
fork to create a duplicate process
exec (one of the exec family that is) to run a new program

fork and exec both preserve file descriptors
> This is how bash operates: it forks, sets file descriptors, and execs

14

Running another program

int execve(char const *path, char *const argv|],
char *const envp[]);

> Last element of argv[] and envp[] must be 0 (NULL)

» |f successful, execve won't return, instead, the OS will remove all of
the process's code and data and load the program from path in its
place and start running that

> The PID of the process doesn't change

> The open file descriptors remain open (unless marked close on exec)

> Returns -1 and sets errno on error

15

exec(3) family

int execl(const char *path, const char *arg0, ...,
(char *)0);
int execle(const char *path, const char *arg0, ...,
(char *)0, char *const envp[]);
int execlp(const char *program, const char *arg0, ...,
(char *)0);
int execv(const char *path, char *const argv|[]);
int execvp(const char *program, char *const argv[]);
> execl, execle, execlp take O-terminated variable number of arguments
» The argv and envp arrays must be O-terminated
> execlp and execvp search PATH for the program
> glibc has an execvpe which is like execve but searches the PATH

16

Fork + exec

let pid = unsafe { libc::fork() };
1f pid == 0 {

let path = CString::new("/bin/1s")?;
let arg = CString::new('-1")7?;
unsafe {

libc::execl(path.as ptr(), // path
path.as ptr(), // arg0
arg.as_ptr(), // argl
std::ptr::null::<18>());
i
}

Child process will be /bin/ls -1

17

After the child executes execl(), which of the pid, path, and arg
variables does the stack for the child process contain?

let pid = unsafe { libc::fork() };
1f pid == 0 {
let path CString::new("/bin/1ls")?;
let arg CString::new('-1")7?;
unsafe {
libc::execl(path.as ptr(), // path
path.as ptr(), // arg0
arg.as_ptr(), // argl
std::ptr::null::<18>());
i

A. pid only C. pid, path, and arg

B. path and arg only D. None of the above

Which of the following statements about execve () is false?

A. If execve() is successful, the new program replaces the calling program.

B. The file descriptors that were open before execve() are open in the new
program (except for those marked as close on exec).

C. If execve () has an error, it returns -1 and sets errno.

D. If execve () Is successful, it returns O.

After a fork, you have two copies of a program, the parent and the child,
and...

A. Either the parent or the child must call exec () Immediately

B. The parent gets a PID and the child gets a 0 as return values from fork

C. The child gets a PID and the parent gets a 0 as return values from fork

D. Both parent and child get PIDs as the return values from fork

E. Both parent and child must call exec to proceed

Process exit status

Can wait for a child process to exit (or be stopped, e.g., by a debugger)
#include <sys/wait.h>

int status;
pid t pid = wait(&status);

Suspends execution until child exits, returns the PID of the child

21

Checking exit status

Use macros to examine exit status

WIFEXITED (status)
> True if the process exited normally

WEXITSTATUS (status)
> Returns actual return/exit value if WIFEXITED (status) IS true

WIFSIGNALED (status)
> True if the process was terminated by a signal (e.g., SIGINT from ctrl-C)

WTERMSIG(status)
> Returns the signal that terminated the process if WIFSIGNALED (status)

22

Wait gets exit status from the process table. What if a process has called
exit, but its parent process has not called wait”?

A. The process will not be allowed to exit.

B. The entry will remain in the process table after the process exits.

C. The process will exit, and when the parent calls wait, it will receive an error.

Zombies and Orphans

If a process exits but its parent has not called wait, it remains in the process
table
» “Kill” command has no effect

If a process’ parent exits before it does, it iIs adopted by the init process,
which will call wait

24

Creating a new process, the Rust way

use std::os::unix::process::ExitStatusExt; Command uses the

use std::process::Command; “builder pattern” to
configure which
fn main() —> io::Result<()> { process to spawn.

let mut child = Command::new("/bin/1s")
.argS(["_-l_"’ "/etC/hOStS"])

.spawn()?; .spawn() returns a Result<Child>

println!("Spawned process with id {}", child.id());

let status = child.wait()?:

if let Some(code) = status.code() {
println!("Process exited with code {codel}");

} else if let Some(sig) = status.signal() {
println!("Process exited with signal {sig}");

}

Ok(())

25

“Builder” pattern in Rust

Create a builder object which will (eventually) construct the actual object
> Most methods take &mut self and return a &mut Self (they return self)
> One method will return the actual object you want

This lets you chain together method calls
let mut child = Command::new("/bin/1s")
.args(["-1", "/etc/hosts"])
. spawn()7?;
IS equivalent to
let mut cmd = Command::new(“/bin/1ls");
cmd.args(["-1", "/etc/hosts"]);
let mut child = cmd.spawn()?;

20

Another builder example

The open system call takes a bunch of different options (look at the man
page for open(2))

The basic File::open() and File::create() handle the two most common cases:
opening a file for reading and creating a file to write

std::fs::OpenOptions is another builder pattern

> You call methods to configure reading, writing, appending, truncating,
etc.

> Then you call .open() to actually perform the open system call and
return a new File object

27

OpenOptions example

To open a file for reading and writing, creating the file if it doesn’t exist, use
let file = OpenOptions::new()

. read(true)

.write(true)

.create(true)

.open("foo.txt")?;

OpenOptions::new() returns an OpenOptions
.read(), .write(), .create() all return self

.open() returns an io: :Result<File>

28

strace(1)

strace(1)

strace Is a Linux program that prints out the system calls a program uses
» —e trace=open,openat,close,read,write will trace those system calls
» —f will trace children too
» —s size will show up to size bytes of strings

29

strace(1)

strace Is a Linux program that prints out the system calls a program uses
» —e trace=open,openat,close,read,write will trace those system calls
» —f will trace children too
» —s size will show up to size bytes of strings

S strace -e trace=open,openat,close,read,write cat Makefile

openat (AT FDCWD, "Makefile"”, O RDONLY) = 3

read(3, "CC := clang\nCFLAGS := -Wall -std"..., 1048576) = 176
write(l, "CC := clang\nCFLAGS -Wall -std"..., 176) = 176
read(3, "", 1048576) = 0

close(3) = 0

29

