
CS 241: Systems Programming
Lecture 14. Structures

Fall 2025

Prof. Stephen Checkoway

1

struct
struct Course {
 department: String,
 number: i32,
 section: i32,
 instructor: String,
}

fn main() {
 let cs241 = Course {
 department: String::from("CSCI"),
 number: 241,
 section: 1,
 instructor: String::from("Stephen Checkoway"),
 };
}

2

struct
struct Course {
 department: String,
 number: i32,
 section: i32,
 instructor: String,
}

fn main() {
 let cs241 = Course {
 department: String::from("CSCI"),
 number: 241,
 section: 1,
 instructor: String::from("Stephen Checkoway"),
 };
}

2

Accessing members
struct Course {
 department: String,
 number: i32,
 section: i32,
 instructor: String,
}

fn main() {
 let cs241 = Course {
 department: String::from("CSCI"),
 number: 241,
 section: 1,
 instructor: String::from("Stephen Checkoway"),
 };
 println!("{} {}", cs241.department, cs241.number);
}

3

Modifying a member
struct Course {
 department: String,
 number: i32,
 section: i32,
 instructor: String,
}

fn main() {
 let mut cs241 = Course {
 department: String::from("CSCI"),
 number: 241,
 section: 1,
 instructor: String::from("Stephen Checkoway"),
 };

 cs241.department = String::from("Computer Science");
}

Old department String was dropped (and its contents deallocated)

4

Modifying a member
struct Course {
 department: String,
 number: i32,
 section: i32,
 instructor: String,
}

fn main() {
 let mut cs241 = Course {
 department: String::from("CSCI"),
 number: 241,
 section: 1,
 instructor: String::from("Stephen Checkoway"),
 };

 cs241.department = String::from("Computer Science");
}

Old department String was dropped (and its contents deallocated)

4

Modifying a member
struct Course {
 department: String,
 number: i32,
 section: i32,
 instructor: String,
}

fn main() {
 let mut cs241 = Course {
 department: String::from("CSCI"),
 number: 241,
 section: 1,
 instructor: String::from("Stephen Checkoway"),
 };

 cs241.department = String::from("Computer Science");
}

Old department String was dropped (and its contents deallocated)

4

Field init shorthand
fn new_course(department: &str, number: i32) -> Course {
 Course {
 department: department.to_string(),
 number, // <— No need to write number: number
 section: 1,
 instructor: String::from("Staff"),
 }
}

fn main() {
 let cs241 = new_course("CSCI", 241);
 println!("{} {}", cs241.department, cs241.number);
}

5

You’re designing a program for interacting with social media and you want to
represent posts using a Post structure you’re designing. Each Post needs an
account name, contents, and a number of “likes.” The account name and
contents never change, but the number of likes can. Which structure
definition best models this?
// A
struct Post {
 account: String,
 contents: String,
 likes: u64,
}

// B
struct Post {
 account: String,
 contents: String,
 likes: mut u64,
}

// C
struct Post {
 String account;
 String contents;
 u64 likes;
}

// D
struct Post {
 account: readonly String,
 contents: readonly String,
 likes: u64,
}

6

Update syntax
fn main() {
 let cs241 = new_course("CSCI", 241);
 let cs241_2 = Course {
 instructor: String::from("Mary Hogan"),
 section: 2,
 ..cs241
 };
}

Moves all of the remaining fields from cs241 into cs241_2 and drops cs241

7

What will this code print out?

8

A. CSCI Mary
Hogan

B. CSCI Cynthia
Taylor

C. This code will
not compile

fn main() {
 let cs241 = Course {
 department: String::from("CSCI"),
 number: 241,
 section: 1,
 instructor: String::from(“Mary Hogan”),
 };

 let cs241_2 = Course {
 instructor: String::from("Cynthia Taylor"),
 section: 2,
 ..cs241
 };
 println!("{} {}", cs241.department, cs241_2.instructor);
}

Tuples
Tuples let us group multiple, heterogeneous types together

They have fixed size (no adding or removing elements)

let val: (i32, char, f64) = (42, '🦀', 6.022e23);

Tuples can be built from any types

9

Tuple structs
struct Point(i32, i32);

fn main() {
 let p = Point(4, 5);
 println!("{} {}", p.0, p.1);
}

Create an new instance by giving the name and field values

Refer to fields using .0, .1, .2, etc., just like tuples

10

Printing structs

11

Printing structs
We cannot print an instance of a struct with println!("{cs241}")

11

Printing structs
We cannot print an instance of a struct with println!("{cs241}")

error[E0277]: `Course` doesn't implement `std::fmt::Display`

11

Printing structs
We cannot print an instance of a struct with println!("{cs241}")

error[E0277]: `Course` doesn't implement `std::fmt::Display`

Display is a trait (like an interface in Java) that we can implement for our
own types

11

Printing structs
We cannot print an instance of a struct with println!("{cs241}")

error[E0277]: `Course` doesn't implement `std::fmt::Display`

Display is a trait (like an interface in Java) that we can implement for our
own types

For arrays and Vecs and Results, we printed the debug representation with
println!("{cs241:?}")

11

Printing structs
We cannot print an instance of a struct with println!("{cs241}")

error[E0277]: `Course` doesn't implement `std::fmt::Display`

Display is a trait (like an interface in Java) that we can implement for our
own types

For arrays and Vecs and Results, we printed the debug representation with
println!("{cs241:?}")

error[E0277]: `Course` doesn't implement `Debug`

11

Deriving Debug
We can ask Rustc to produce an implementation of the Debug trait for us

#[derive(Debug)]
struct Course { … }

fn main() {
 let cs241 = new_course("CSCI", 241);
 println!("{cs241:?}");
 println!("{cs241:#?}");
}

Output:
Course { department: "CSCI", number: 241, section: 1, instructor: "Staff" }
Course {
 department: "CSCI",
 number: 241,
 section: 1,
 instructor: "Staff",
}

12

Making copies via clone
The Clone trait has a .clone() method that makes a deep copy of objects

fn main() {
 let arr = vec![1, 2, 3, 4, 5];
 let arr2 = arr.clone();
 let arr3 = arr;
}

Most types implement Clone

13

Deriving Clone
#[derive(Debug, Clone)]
struct Course {
 department: String,
 number: i32,
 section: i32,
 instructor: String,
}

All of the members’ types must implement Clone in order to derive Clone

14

Methods

15

Methods
Methods are functions defined for a type that take an instance of the type as
the first argument

‣ Similar to methods in object-oriented languages like Java and Python

15

Methods
Methods are functions defined for a type that take an instance of the type as
the first argument

‣ Similar to methods in object-oriented languages like Java and Python

The first parameter is always named self and it is explicit (unlike Java and  
C++’s implicit this parameter)

15

Methods
Methods are functions defined for a type that take an instance of the type as
the first argument

‣ Similar to methods in object-oriented languages like Java and Python

The first parameter is always named self and it is explicit (unlike Java and  
C++’s implicit this parameter)

We’ve used a bunch of examples of methods already including

‣ .len() for slices

‣ .push() for Strings and Vecs

‣ .push_str() for Strings

‣ .chars() to get an iterator over characters in a String

‣ .iter() to get an iterator over a collection (like a Vec)

15

Three types of methods

16

Three types of methods
There are three types of methods which are distinguished by the self
parameter

16

Three types of methods
There are three types of methods which are distinguished by the self
parameter
‣ fn foo(&self) {}	 	 	 self is a shared reference to the instance

16

Three types of methods
There are three types of methods which are distinguished by the self
parameter
‣ fn foo(&self) {}	 	 	 self is a shared reference to the instance
‣ fn foo(&mut self) {}	 self is a mutable reference to the instance

16

Three types of methods
There are three types of methods which are distinguished by the self
parameter
‣ fn foo(&self) {}	 	 	 self is a shared reference to the instance
‣ fn foo(&mut self) {}	 self is a mutable reference to the instance
‣ fn foo(self) {}	 	 	 foo takes ownership of the instance

16

Methods taking shared refs
impl Course {
 fn name(&self) -> String {
 format!("{} {}", self.department, self.number)
 }

 fn full_name(&self) -> String {
 format!("{} {}-{}", self.department, self.number, self.section)
 }
}

fn main() {
 let cs241 = new_course("CSCI", 241);
 println!("{}", cs241.name());
}

17

Methods taking mutable refs
impl Course {
 fn set_instructor(&mut self, instructor: &str) {
 self.instructor = instructor.to_string();
 }
}

fn main() {
 let mut cs241 = new_course("CSCI", 241);
 cs241.set_instructor("Mary Hogan");
 println!("{}", cs241.instructor);
}

18

Methods taking ownership

19

Methods taking ownership
Two main use cases

‣ The type can be copied (like i32, usize, bool)

‣ The method is returning some lower-level implementation

19

Methods taking ownership
Two main use cases

‣ The type can be copied (like i32, usize, bool)

‣ The method is returning some lower-level implementation

i32 (and other integer types) have a bunch of methods that take self

‣ fn abs(self) -> i32
‣ fn pow(self, exp: u32) -> i32

19

Methods taking ownership
Two main use cases

‣ The type can be copied (like i32, usize, bool)

‣ The method is returning some lower-level implementation

i32 (and other integer types) have a bunch of methods that take self

‣ fn abs(self) -> i32
‣ fn pow(self, exp: u32) -> i32

Many types have .into_foo() methods that return implementation details

‣ String has fn into_bytes(self) -> Vec<u8>

19

Getters and setters are methods for getting or setting the value of a field.
Imagine we have the following struct with a getter and a setter for the url
field. Which of the three possible self parameters should we use for the url()
and set_url() methods?

struct Foo {
 url: String,
}

impl Foo {
 fn url(SELF) -> &str { &self.url }
 fn set_url(SELF, url: String) { self.url = url; }
}

20

url() set_url()
A &self &mut self
B self mut self
C self &self
D &mut self &mut self
E &self &self

Method calls are syntactic sugar
 cs241.set_instructor("Mary Hogan");
 println!("{}", cs241.name);

is the same as 

 Course::set_instructor(&mut cs241, "Mary Hogan");
 println!("{}", Course::name(&cs241));

21

Associated functions

22

Associated functions
Functions defined inside impl blocks are called associated functions

22

Associated functions
Functions defined inside impl blocks are called associated functions

Methods are one type of associated functions

22

Associated functions
Functions defined inside impl blocks are called associated functions

Methods are one type of associated functions

We can also have associated functions that don’t take an instance as an
argument

‣ These are typically constructor functions

‣ Most types have a new() associated function that returns a new

instance of the type

22

Associated functions
Functions defined inside impl blocks are called associated functions

Methods are one type of associated functions

We can also have associated functions that don’t take an instance as an
argument

‣ These are typically constructor functions

‣ Most types have a new() associated function that returns a new

instance of the type

Inside the impl block we can refer to the type as Self

22

Constructor
impl Course {
 fn new(department: &str, number: i32) -> Self {
 Self {
 department: department.to_string(),
 number,
 section: 1,
 instructor: String::from("Staff"),
 }
 }
}

fn main() {
 let cs241 = Course::new("CSCI", 241);
 println!("{}", cs241.name());
}

23

Examples from the standard library
‣ String::new()	 	 	 	 	 — Creates a new, empty String

‣ Vec::new()		 	 	 	 	 — Creates a new, empty Vec

‣ Vec::with_capacity(100)	 — Creates a new, empty Vec with capacity 100

‣ HashMap::new()		 	 	 — Creates a new, empty HashMap

‣ BufReader::new(inner)		 — Creates a new BufReader around some

underlying type that implements the Read trait

24

