
CS 241: Systems Programming
Lecture 13. Slices

Fall 2025

Prof. Stephen Checkoway

1

String slices
String slices are a reference to a portion of a string

fn main() {
 let hello_world = String::from("hello world");
 let hi: &str = &hello_world[1..5];
 println!("{hi}");
}
Output:
ello

2

&str
Previously, we said &str was a reference to a string which is true, but it it’s
actually a reference to a portion of a string!

String literals are actually slices

let foo: &str = "This is a string literal";

3

&String -> &str
Rust will convert &String into &str automatically

 let s = String::from("asdf");
 let slice: &str = &s;

4

Passing strings to functions
fn foo(arg: String) {}
fn bar(arg: &str) {}

fn main() {
 let s = String::from("abc");
 foo(s); // Valid, moves s into foo
 foo("abc"); // Invalid, foo() expects a String

 let t = String::from("xyz");
 bar(&t); // Automatic conversion from &String to &str
 bar("xyz"); // Valid
}

5

Given a function

fn foo(s1: &str, s2: &str) { }
and some variables
let x = String::from("abc");
let y = "xyz";
What is the right way to pass x and y to foo()?

A. foo(&x, &y)

B. foo(&x, y)

C. foo(x, &y)

D. foo(x, y)

6

Many string methods defined on &str
Because of the automatic conversion, many string methods actually operate
on &str and not String

‣ .len()

‣ .is_empty()

‣ .find()

‣ .parse()

‣ .starts_with()

‣ .lines()

‣ .replace() [operates on &str, returns a String]

7

Slices are “fat” pointers
Slices are non-owning pointers with additional data, namely a length

let s = String::from("hello world");
let hello: &str = &s[0..5];
let world: &str = &s[6..11];
let s2: &String = &s;

8

&String vs. &str
&String is a pointer to the String 
&str is a pointer + length to the actual string data

9

let s = String::from("hello world");
let s2: &String = &s;
let s3: &str = &s;

let mut sentence = String::from("This is sample sentence.");
// Get a reference to the first word.
let orig_first_word: &str = sentence.split_whitespace().next().unwrap();

sentence.make_ascii_uppercase(); // Convert to upper case letters in place (no reallocation)
// Get a reference to the new first word.
let new_first_word: &str = sentence.split_whitespace().next().unwrap();
println!("{orig_first_word} -> {new_first_word}");

error[E0502]: cannot borrow `sentence` as mutable because it is also borrowed as immutable
 |
4 | let orig_first_word: &str = sentence.split_whitespace().next().unwrap();
 | --------------------------- immutable borrow occurs here
5 |
6 | sentence.make_ascii_uppercase();
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
...
9 | println!("{orig_first_word} -> {new_first_word}");
 | ----------------- immutable borrow later used here

This error

A. Prevented undefined behavior

B. Prevented a logic bug

C. Is due to a limitation in Rust’s analysis

10

Stack/heap from clicker question
L3 shows the stack/heap after creating
the orig_first_word slice

L4 shows the stack/heap after
uppercasing the string

L5 shows the stack/heap after creating
the new_first_word slice

11

How the Borrow Checker caught this

12

How the Borrow Checker caught this

13

How the Borrow Checker caught this

14

Fixing the code
The problem: We’re changing the string we have a reference to

The solution: Create a new string holding the original contents of the word

let orig_first_word = String::from(sentence.split_whitespace().next().unwrap());

15

What will this code print?

/// Return a slice referencing the first
/// two characters of s
fn first_two(s: &str) -> &str {
 &s[..2]
}

fn main() {
 let ascii = String::from("ASCII text");
 let s = first_two(&ascii);
 print!("{s} ");

 let emoji = String::from("🦀🦑🦐");
 let t = first_two(&emoji);
 println!("{t}");
}

A. A 🦀

B. AS🦀🦑

C. AS🦀

D. This will cause an error
16

String slices are slightly annoying
/// Return a slice referencing the first
/// two characters of s
fn first_two(s: &str) -> &str {
 &s[..2]
}

fn main() {
 let ascii = String::from("ASCII text");
 let s = first_two(&ascii);
 println!("{s}");

 let emoji = String::from("🦀🦑🦐");
 let t = first_two(&emoji);
 println!("{t}");
}

17

Output
AS

thread 'main' panicked at 'byte index 2 is not a char
boundary; it is inside '🦀' (bytes 0..4) of `🦀🦑🦐`',
slice.rs:11:6

18

String slices must be on UTF-8 boundaries
Strings are UTF-8 encoded

‣ Each Unicode “code point” is encoded in 1–4 bytes

‣ String slices must start and end on valid UTF-8 boundaries

‣ Some characters (e.g., some emoji) require multiple code points like 🏴☠

which requires 4 code points and 13 bytes!

‣ Some characters (mostly those with accents) have (at least) two

different encodings: a “precomposed” version like ÿ (1 code point, 2
bytes) and a decomposed version consisting of y and ¨ (2 code points, 3
bytes)

Text is hard

19

&[T; n] -> &[T]
&Vec<T> -> &[T]
Rust will convert a reference to an array [T; n] or a reference to a Vec<T> into
an array slice &[T]

 let arr: [bool; 4] = [true, false, false, true];
 let v: Vec<u8> = vec![128, 64, 32, 16, 8, 4, 2, 1];

 let slice1: &[bool] = &arr;
 let slice2: &[u8] = &v;

20

Array slices
fn sum(data: &[i32]) -> i32 {
 let mut result = 0;
 for x in data {
 result += *x;
 }
 result
}

fn main() {
 let arr = [1, 2, 3, 4, 5, 6, 7, 8, 9];
 let v = vec![3, -72, 42, 100];

 println!("{}", sum(&arr[1..3]));
 println!("{}", sum(&arr));
 println!("{}", sum(&v[2..]));
 println!("{}", sum(&v));
}

21

What will this code print?

A. 2, 15, 100, 160

B. 3, 15, 150, 160

C. 5, 15, 130, 160

D. 9, 15, 130, 160

E. This code will not
compile

22

Many methods are defined on slices rather than
the array or Vec
Examples

‣ .len()

‣ .first()

‣ .last()

‣ .get()	 	 Returns a reference to the item or slice wrapped in an Option

‣ .get_mut() Same but returns a mutable reference

‣ .contains()

‣ .starts_with()

‣ .binary_search()

‣ .sort()

23

Ranges

24

Ranges
We create a slice by giving a range [start, end) as start..end

‣ &foo[..end] is the same as &foo[0..end]

‣ &foo[start..] is the same as &foo[start..foo.len()]

24

Ranges
We create a slice by giving a range [start, end) as start..end

‣ &foo[..end] is the same as &foo[0..end]

‣ &foo[start..] is the same as &foo[start..foo.len()]

Ranges are more generally useful (besides just for slices)
 for x in 0..4 {
 println!("{x}");
 }
Output:
0
1
2
3

24

Inclusive ranges
The syntax start..=end gives a range [start, end] (so it includes end)

 for x in 0..=4 {
 println!("{x}");
 }
Output:
0
1
2
3
4

25

Range start and end
The start and end of a range can be variables or expressions

 let x = 10;
 let y = 20;
 for num in x+3..2*y {
 println!("{num}");
 }

Prints out 13, 14, …, 39

26

Reversing a range
Ranges are a type of reversible iterator so we can use .rev() to get an iterator
in the reverse order

 let x = 10;
 let y = 20;
 for num in (x+3..2*y).rev() {
 println!("{num}");
 }

Prints 39, 38, …, 13

27

How do you construct an iterator that returns the values 20, 19, …, 11?

A. (11..20).rev()

B. (10..20).rev()

C. (10..21).rev()

D. (11..21).rev()

E. (9..19).rev()

28

Wed Preview - Structs
•Creating structs

•Accessing/modifying members of structs

•Methods

29

