CS 241: Systems Programming
Lecture 6. Shell Scripting 1

Fall 2025
Prof. Stephen Checkoway

Wed Review - Version Control

Creating qit repositories
Git commits

*Pulling from remote repositories

Permissions

Every user has an id (uid), a group id (gid) and belongs to a set of groups

Every file has an owner, a group, and a set of

steve@clyde:~$ id

u1d=1425750506(steve) g1d=1425750506(steve) groups=1425750506(steve), 1425700508 faculty)
steve@clyde:~$ 1ls -1d /home

4' root [root 4096 Aug 13 2013 /home

steve@clyde:~% ls -1d ~
drwxr-x--xJ30 'steve jfacultyf 50 Sep 2 11:31 /usr/users/noquota/faculty/steve
steve@clyde:~$ 1s -1 hello.py

First letter of permissions says what type of file it is: - is file, d is directory

Permissions

The next 9 letters rwxrwxrwx control who has what type of access
> owner
> group
> other (everyone else)

Each group of 3 determines what access the corresponding users have
> Files
» r — the owner/group/other can read the file
> w — the owner/group/other can write the file
» X — the owner/group/other can execute the file (run it as a program)
> Directories
» r — the owner/group/other can see which files are in the directory
> w — the owner/group/other can add/delete files in the directory
> X — the owner/group/other car) access files in the directory

Permissions example

-rw-r—--r—-- 1 mhogan mhogan 0 Sep 3 14:25 foo
The owner (mhogan) can read and write foo, everyone else can read it

—rWX—————— 1 mhogan mhogan 100 Aug 31 14:31 hello.py
The owner can read, write, or execute, everyone else can do nothing

drwxr-x--x 33 mhogan faculty 54 Sep 3 14:25 .
drwxrwxr-x 2 mhogan faculty 4 Sep 2 11:45 books/

mhogan and all faculty have full access to ./books, everyone else can see
the directory contents

Changing owner/group/perms

Handy shell commands
» chown — Change owner (and group) of files/directories
> chgrp — Change group of files/directories
» chmod — Change permissions for files/directories

Permissions are often specified numerically in octal (base 8)
> O — - 4 = Y =

»] = —-=Xx 5 = r-x
> 2 - W — 6 = rw-
» 3 = —-wX 7 = rwx

Common values 755 (rwxr-xr-x) and 644 (rw-r--r--)

0

After running 1s -1 we see the line
drwxr-x--- 6 mhogan faculty 14 Dec 18 15:59 hwé6-solutions

What of the following statements is false”

A. hwé-solutions Is a directory
B. User mhogan is the only one who can read files In hw6-solutions

C. User mhogan is the only one who can create/delete files in hw6 -
solutions

. Users (other than mhogan) who are not in the faculty group cannot see
a directory listing for hw6-solutions

Shell script basics

The shell executes lines one after another

Here's a file named space (helpfully colored by vim)

echo "Hello ${USER}."

disk usage="$(du --summarize --human-readable "${HOME}" | cut -f 1)"
echo "Your home directory uses ${disk usage}."”

| can run this on mcnulty
mhogan@mcnulty:~$ bash space

Hello mhogan.
Your home directory uses 353M.

Making the script executable

Provide a "shebang” line
> For bash: #! /bin/bash
> This will cause the OS to run /bin/bash with the script path as its
argument
#!/bin/bash

echo "Hello S${USER}."

disk usage="$(du --summarize --human-readable "${HOME}" | cut -f 1)"
echo "Your home directory uses ${disk usage}.”

Make the script executable and run it
mhogan@mcnulty:~$ chmod +x space
mhogan@mcnulty:~$./space

Hello mhogan.

Your home directory uses 353M.
9

For loops

for var in word...; do

commands
done

The words undergo expansion

for file in *.*: do
Expand file and replace everything up to and including the first

period with a single period.
echo "${file/#*./.}"
done

Prints out the file extension of each file in the current directory

10

For loop example

for num in {1..10}; do

echo "S${num}"”
done

Brace expansion makes this identical to

for num 1in 1 2 3 4 5 6 7 8 9 10; do

echo "$S{num}"”
done

11

C-style for loop

for ((num = 1; num <= 10; ++num)); do

echo "$S{num}"”
done

12

Which for loop should we use to loop over all files with extension .txt?

A. for file *.txt; do . for ((file; *.txt; ++file)); do
cmds cmds

done done

for file 1in *.txt; do . for ((file; ++file; *.txt)); do
cmds cmds

done done

for file i1in "*.txt":; do
cmds
done

Exit values

Every command returns an integer in the range {0, 1, ..., 255}
> 0 means success
> Everything else means failure

After each command, bash sets the variable $? to the exit value of the
command

S echo hi; echo "§$?"
hi
0

S 1ls nonexistent; echo "§$?"
ls: cannot access 'nonexistent’': No such file or directory

2

14

Conditionals

1f cmd; then

more cmds
fi

If cmd returns 0 (success), then run more cmds

1f cmdl; then
then cmds

elif cmd2; then
then cmds?2

else
else cmds
fi

15

1f true; then

echo
fi

When run, this code will print out "Our intuition works!"

Given that, what value must true return?

D. false

E. Some other integer

Other loops

while loop while cmd; do
> execute cmds as long as cmd returns O cmds
done
until loop
> execute cmds until cmd returns O until cmd; do

cmds
done

17

Conditional expressions

[[exXpr]]
» Evaluates expr and returns O if it Is true and 1 if it is false

String comparisons
» strl OP str2 — OPIsoneof =, =, <, or >
» —z str — true if str is an empty string (zero length)
» —n str — true if str is not an empty string (honzero length)

Integer comparisons
> argl OP arg2 — OPIsone of -eqg, -ne, -1t, -1le, —gt, Or —ge

18

Examples

1f [["$S{mode}" = debug]]; then
echo 'the mode variable has the wvalue debug’
fi

1f [[-2 "${var}"]]; then
echo 'the var variable 1s the empty string’
fi

if [[$# -gt 0]]; then

echo "the first script/function argument is S$1"
fi

19

Complete example

#!/bin/bash
Play a guessing game.

num=$((RANDOM % 10 + 1))

IFS= read -p 'Guess a number between 1 and 10: ' -e -r guess
1f [["S{num}" -eq "S{guess}"]1]; then

echo 'Good guess!'
else

echo "Sorry. You guessed ${guess} but the number was ${num}."
fi

S ./guess
Guess a number between 1 and 10: 3
Sorry. You guessed 3 but the number was 6.

20

Conditional expressions

File tests
» —e file — trueif £file exists

» —f file — trueif £ile exists and is a regular file

» —d file — trueif £ile exists and is a directory

> There are a whole bunch more, read bash (1) under CONDITIONAL
EXPRESSIONS

Other operators
» (expr) — grouping
» | expr — true if expr is false
» exprl && expr2 — logical AND
» exprl || expr2 — logical OR

21

Example script

#!/bin/bash

ret=0
for path in "$@"; do
1f [[-f "${path}"”]]; then

echo "${path}: file"
elif [[-d "S{path}"]]; then
echo "${path}: directory"”
else
echo "${path}: No such file or directory" >&2
of =3
fi
done
exlt S${ret}

Mon Preview - More shell scripting

*Arguments
Functions

*Arrays

