
CS 241: Systems Programming
Lecture 6. Shell Scripting 1

Fall 2025

Prof. Stephen Checkoway

1

Wed Review - Version Control
•Creating git repositories

•Git commits

•Pulling from remote repositories

2

Permissions
Every user has an id (uid), a group id (gid) and belongs to a set of groups

Every file has an owner, a group, and a set of permissions

First letter of permissions says what type of file it is: - is file, d is directory

3

Permissions
The next 9 letters rwxrwxrwx control who has what type of access

‣ owner

‣ group

‣ other (everyone else)

Each group of 3 determines what access the corresponding users have

‣ Files

‣ r	 — the owner/group/other can read the file

‣ w	— the owner/group/other can write the file

‣ x	— the owner/group/other can execute the file (run it as a program)

‣ Directories

‣ r	 — the owner/group/other can see which files are in the directory

‣ w	— the owner/group/other can add/delete files in the directory

‣ x	— the owner/group/other can access files in the directory4

Permissions example
-rw-r--r-- 1 mhogan mhogan 0 Sep 3 14:25 foo  
The owner (mhogan) can read and write foo, everyone else can read it

-rwx------ 1 mhogan mhogan 100 Aug 31 14:31 hello.py  
The owner can read, write, or execute, everyone else can do nothing

drwxr-x--x 33 mhogan faculty 54 Sep 3 14:25 .  
drwxrwxr-x 2 mhogan faculty 4 Sep 2 11:45 books/  
mhogan and all faculty have full access to ./books, everyone else can see
the directory contents

5

Changing owner/group/perms
Handy shell commands

‣ chown	— Change owner (and group) of files/directories

‣ chgrp	— Change group of files/directories

‣ chmod	— Change permissions for files/directories

Permissions are often specified numerically in octal (base 8)

‣ 0 = ---	 	 4 = r--

‣ 1 = --x	 	 5 = r-x

‣ 2 = -w-	 	 6 = rw-

‣ 3 = -wx	 	 7 = rwx

Common values 755 (rwxr-xr-x) and 644 (rw-r--r--)

6

After running ls -l we see the line 
drwxr-x--- 6 mhogan faculty 14 Dec 18 15:59 hw6-solutions

What of the following statements is false?

A. hw6-solutions is a directory

B. User mhogan is the only one who can read files in hw6-solutions

C. User mhogan is the only one who can create/delete files in hw6-
solutions

D. Users (other than mhogan) who are not in the faculty group cannot see
a directory listing for hw6-solutions

7

Shell script basics
The shell executes lines one after another

Here's a file named space (helpfully colored by vim) 

I can run this on mcnulty 
mhogan@mcnulty:~$ bash space  
Hello mhogan.  
Your home directory uses 353M.

8

echo "Hello ${USER}."
disk_usage="$(du --summarize --human-readable "${HOME}" | cut -f 1)"
echo "Your home directory uses ${disk_usage}."

Making the script executable
Provide a "shebang" line

‣ For bash: #!/bin/bash
‣ This will cause the OS to run /bin/bash with the script path as its

argument

Make the script executable and run it 
mhogan@mcnulty:~$ chmod +x space  
mhogan@mcnulty:~$./space  
Hello mhogan.  
Your home directory uses 353M.

9

#!/bin/bash

echo "Hello ${USER}."
disk_usage="$(du --summarize --human-readable "${HOME}" | cut -f 1)"
echo "Your home directory uses ${disk_usage}."

For loops

The words undergo expansion

10

for var in word...; do
 commands
done

for file in *.*; do
 # Expand file and replace everything up to and including the first
 # period with a single period.
 echo "${file/#*./.}"
done

Prints out the file extension of each file in the current directory

For loop example

Brace expansion makes this identical to

11

for num in {1..10}; do
 echo "${num}"
done

for num in 1 2 3 4 5 6 7 8 9 10; do
 echo "${num}"
done

C-style for loop

12

for ((num = 1; num <= 10; ++num)); do
 echo "${num}"
done

Which for loop should we use to loop over all files with extension .txt?

13

A. for file *.txt; do
 cmds
 done

B. for file in *.txt; do
 cmds
 done

C. for file in "*.txt"; do
 cmds
 done

D. for ((file; *.txt; ++file)); do
 cmds
 done

E. for ((file; ++file; *.txt)); do
 cmds
 done

Exit values
Every command returns an integer in the range {0, 1, ..., 255}

‣ 0 means success

‣ Everything else means failure

After each command, bash sets the variable $? to the exit value of the
command

14

$ echo hi; echo "$?"
hi
0
$ ls nonexistent; echo "$?"
ls: cannot access 'nonexistent': No such file or directory
2

Conditionals

If cmd returns 0 (success), then run more_cmds

15

if cmd; then
 more_cmds
fi

if cmd1; then
 then_cmds
elif cmd2; then
 then_cmds2
else
 else_cmds
fi

When run, this code will print out "Our intuition works!"

Given that, what value must true return?

A. 0

B. 1

C. true

D. false

E. Some other integer

16

if true; then
 echo 'Our intuition works!'
fi

Other loops
while loop

‣ execute cmds as long as cmd returns 0

until loop

‣ execute cmds until cmd returns 0

17

while cmd; do
 cmds
done

until cmd; do
 cmds
done

Conditional expressions
[[expr]]

‣ Evaluates expr and returns 0 if it is true and 1 if it is false

String comparisons

‣ str1 OP str2 — OP is one of =, !=, <, or >

‣ -z str — true if str is an empty string (zero length)

‣ -n str — true if str is not an empty string (nonzero length)

Integer comparisons

‣ arg1 OP arg2 — OP is one of -eq, -ne, -lt, -le, -gt, or -ge

18

Examples
if [["${mode}" = debug]]; then  

echo 'the mode variable has the value debug'  
fi

if [[-z "${var}"]]; then  
echo 'the var variable is the empty string'  

fi

if [[$# -gt 0]]; then  
echo "the first script/function argument is $1"  

fi

19

Complete example

20

#!/bin/bash

Play a guessing game.

num=$((RANDOM % 10 + 1))

IFS= read -p 'Guess a number between 1 and 10: ' -e -r guess
if [["${num}" -eq "${guess}"]]; then
 echo 'Good guess!'
else
 echo "Sorry. You guessed ${guess} but the number was ${num}."
fi

$./guess
Guess a number between 1 and 10: 3
Sorry. You guessed 3 but the number was 6.

Conditional expressions
File tests

‣ -e file — true if file exists

‣ -f file — true if file exists and is a regular file

‣ -d file — true if file exists and is a directory

‣ There are a whole bunch more, read bash(1) under CONDITIONAL
EXPRESSIONS

Other operators

‣ (expr) — grouping

‣ ! expr — true if expr is false

‣ expr1 && expr2 — logical AND

‣ expr1 || expr2 — logical OR

21

Example script
#!/bin/bash

ret=0
for path in "$@"; do
 if [[-f "${path}"]]; then
 echo "${path}: file"
 elif [[-d "${path}"]]; then
 echo "${path}: directory"
 else
 echo "${path}: No such file or directory" >&2
 ret=1
 fi
done
exit ${ret}

22

Mon Preview - More shell scripting
•Arguments

•Functions

•Arrays

23

