
CS 241: Systems Programming
Lecture 3. More Shell

Spring 2025

Prof. Stephen Checkoway

1

Sign up for the CS newsletter!

Friday Review - Intro to Unix/Shell
•Relative vs absolute paths

•Bash commands

•Man pages

2

Anatomy of a single command
⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

• Options can take arguments: -o file.txt or --output=file.txt

‣ ⟨arguments⟩ are the things the command acts on

• Often file paths or server names or URLs

• When no arguments are given (or a single -), many commands read stdin

Example: tar -zcf archive.tar.gz --verbose dir/file1 file2

3

Example meaning

4
Click to go to explainshell.com

https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2
https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2

5

https://xkcd.com/1168

Shell commands
Shell builtins

‣ Functionality built into bash (all listed in the manual)

‣ E.g., cd, alias, echo, pwd

Shell functions

‣ User-defined functions (we'll get to these later)

Aliases

‣ E.g., alias ls='ls --color=auto'

Programs stored on the file system

‣ /bin, /usr/bin, /usr/local/bin, /sbin, /usr/sbin

‣ E.g., ssh, cat, ls, rm

6

Performing repetitive tasks
Setup: You have a project directory containing some source code, some
data, and a README. 

project
├── README.md
├── a.csv
├── b.csv
├── c.csv
├── d.csv
└── process.py

You want to reorganize the project by moving all of the CSV files into a new
data directory

7

project
├── README.md
├── data
│ ├── a.csv
│ ├── b.csv
│ ├── c.csv
│ └── d.csv
└── process.py

A suboptimal approach
We can create the new data directory easily

$ cd project
$ mkdir data

Moving all of the files is really repetitive

$ mv a.csv data
$ mv b.csv data
$ mv c.csv data
$ mv d.csv data

Even this is repetitive: $ mv a.csv b.csv c.csv d.csv data
8

A better approach: globbing
$ mv *.csv data

The *.csv isn’t handled by the mv command, but by bash itself

*.csv will be replaced with a (space separated) list of files that in the
directory that end with .csv

In other words, that command becomes the following before it is executed

$ mv a.csv b.csv c.csv d.csv data

9

Pathname expansion/globbing
Bash performs pathname expansion via pattern matching (a.k.a. globbing)
on each unquoted word containing a wild card

Wild cards: *, ?, [

‣ * matches zero or more characters

‣ ? matches any one character

‣ […] matches any single character between the brackets, e.g., [atz]
‣ [!…] or [^…] matches any character not between the brackets

‣ [x-y] matches any character in the range, e.g., [a-f]

10

Example
$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*
ex/a-3.bin ex/a-3.txt ex/b-3.bin ex/b-3.txt

$ ls ex/[^acd]-[0-9].b*in
ex/b-1.bin ex/b-2.bin ex/b-3.bin

$ ls "ex/*"
ls: cannot access 'ex/*': No such file or
directory

11

Which command copies all Rust source files (those whose names end
in .rs) from the directory a/b to the directory /tmp?

12

A. $ cp a/b/[a-z].rs /tmp

B. $ cp a/*/*.rs /tmp

C. $ cp a/b/*.rs /tmp

D. $ cp a/b/?.rs /tmp

E. $ cp a/b /tmp *.rs

CP(1) User Commands CP(1)

NAME
 cp - copy files and directories

SYNOPSIS
 cp [OPTION]... [-T] SOURCE DEST
 cp [OPTION]... SOURCE... DIRECTORY
 cp [OPTION]... -t DIRECTORY SOURCE...

DESCRIPTION
 Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

Typical Unix tool behavior
$ program

‣ reads from stdin, writes to stdout

$ program file1 file2 file3

‣ runs ‘program’ on the 3 files, write to stdout

$ program –

‣ For programs that require filenames, might read from stdin

13

Standard input/output/error
Every running program has (by default) 3 open "files" referred to by their file
descriptor number

Input comes from stdin (file descriptor 0)

‣ input() # Python: Read a line

‣ System.in.read(var) // Java: Read bytes and store in var array

‣ $ IFS= read -r var # Read a line and store in var variable

14

Standard input/output/error
Normal output goes to stdout (file descriptor 1)

‣ print(var) # Python

‣ System.out.println(var) // Java

‣ $ echo "${var}" # Bash

Error messages traditionally go to stderr (file descriptor 2)

‣ print(var, file=sys.stderr) # Python

‣ System.err.println(var) // Java

‣ $ echo "${var}" >&2 # Bash

15

Standard input/output/error redirection
By default, text written to stdout and stderr both appears on the console

We can control this behavior by redirecting one or both of stdout and stderr

Input to a program is read from stdin

By default stdin is connected to the console and characters we type are the
input

We can control this behavior by redirecting stdin

16

Redirection
>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right

‣ $ ls | wc

2>file — redirect standard error (stderr) to file with truncation

2>&1 — redirect stderr to stdout

17

Redirection examples
$ echo 'Hi!' >output.txt

$ cat <input.txt

$ sort <input.txt >output.txt

$ ps -ax | grep bash

$ grep hello file | sort | uniq -c

$ echo Hello | cut -c 1-4 >>result.txt

$./process <input | tail -n 4 >output

18

(Almost) everything is a file
Files on the file system

Network sockets (for communicating with remote computers, e.g., web browsers,
ssh, mail clients etc.)

Terminal I/O

A bunch of special files

‣ /dev/null — Writes are ignored, reads return end-of-file (EOF)

‣ /dev/zero — Writes are ignored, reads return arbitrarily many 0 bytes

‣ /dev/urandom	— Reads return arbitrarily many (pseudo) random bytes

19

A. $ foo >/dev/null

B. $ foo 1>/dev/null

C. $ foo 2>/dev/null

D. $ foo | /dev/null

E. $ foo &2>/dev/null

20

Given that /dev/null ignores all data written to it, how can we run the
program foo and redirect stderr so no error messages appear in our
terminal but we continue to see normal output on stdout?

A. $ foo </dev/null

B. $ foo </dev/zero

C. $ foo </dev/urandom

D. $ foo </dev/eof

E. $ echo | foo

21

Some programs read all of their input on stdin before terminating. If foo is
such a program, how can we run foo such that it has no input at all? (foo
is just an example, not a real program.)

Grep
Allows you to recursively search a directory

$ grep -r {pattern} {directory}

Really useful when working with large codebases

‣ Find all instances of when a function is used

‣ Find the definition of a function

‣ Find the source of error messages

22

