
CS 241: Systems Programming
Lecture 2. Introduction to Unix and

the Shell
Fall 2025

Prof. Stephen Checkoway

1

Sign up for the CS newsletter!

What is the shell?
Text-based interface to the operating system and to the file system

User enters commands

The shell runs the commands

Output appears on a terminal (terminal emulator)

Commands can change files/directories on the file system

2

Terminals/terminal emulators

DEC VT100 terminal

https://upload.wikimedia.org/wikipedia/commons/6/6f/Terminal-dec-vt100.jpg

iTerm2 terminal emulator

3

There are many shells
sh		 	 Bourne shell

bash		 Bourne again shell (the one we'll be using)

dash		 Light-weight Bourne shell (often named sh on Linux)

csh	 	 C shell

tcsh		 An improved csh

ksh	 	 Korn shell (sh-compatible, some csh features)

zsh	 	 Z shell (incorporates aspects of tcsh, ksh, and bash, default for macOS)
4

Interpreter loop

Display
prompt

Read
command

Interpret
command

Execute
command

5

Types of commands
Commands to print output to the screen

‣ $ echo 'Hello world!'

Commands to manipulate the file system

‣ $ ls
‣ $ mv old_name.txt new_name.txt

GUI programs

‣ $ code lab1
‣ $ firefox

Most commands run programs, some are shell builtins

6

The file system
Structured as a single tree with root node: /

Directories hold files and directories

We name files (or directories) by giving a path
through the tree

‣ Absolute path: /usr/bin/ssh

‣ Relative path (we'll come back to this)

7

Some important directories
/	 	 	 	 The root directory

/bin		 	 Holds programs used for essential tasks (e.g., cp, mv, ls)

/sbin	 	 Superuser (administrator) binaries

/etc		 	 System-wide configuration files

/usr		 	 Holds programs and support files for user programs

/usr/bin	 User binaries

/home	 	 Holds users' home directories (this is configurable)
8

The current working directory
Every program on the system has its own current working directory

Not related to where the program lives in the file system

Programs can change their current working directory

The initial working directory of a running program is the current working
directory of the parent—the program that launched the program

9

Bash's current working directory
The shell has a current directory (like every running program)

cd changes the current working directory

pwd prints the current working directory

We can name files using an absolute path or a relative path

‣ Absolute (starts with a /): /usr/bin/ssh

‣ Relative to the current working directory (doesn't start with a /)

Programs run by bash start with their initial working directory set to bash's
current working directory

10

Accessing files via relative paths
Programs read (and write) files all the time

It would be painful to always give the full path

‣ “Edit file /home/mary/programming/neat-project/main.py”

‣ “Edit file /home/mary/programming/neat-project/drawing.py”

‣ “Run program /home/mary/programming/neat-project/main.py”

By changing the current directory to /home/mary/programming/neat-project

‣ “Edit file main.py”

‣ “Edit file drawing.py”

‣ “Run program main.py”

11

From relative to absolute paths
Constructing an absolute path from a relative path is easy:

‣ absolute_path = current_working_directory + “/” + relative_path

This happens automatically when accessing files via a relative path

12

Example of a relative path

13

Running bash from bash
When we open a terminal (emulator), it runs our shell, usually bash [except
newer macOS]

In Lab 0, we will run 
$ bash hello.sh

Two instances of bash will be running at the same time

‣ The interactive bash we type our commands in; and

‣ The noninteractive bash that runs the commands from inside hello.sh

hello.sh is a relative path to the file that the noninteractive bash tries to
read

14

A. $ bash hello.sh

B. $ bash programming hello.sh

C. $ bash programming\hello.sh

D. $ bash programming/hello.sh

E. $ bash programming:hello.sh

If bash’s current working directory is your home directory and the script you
want to run, hello.sh, is in the programming directory inside your home
directory, which of the following commands would you use?

15

Useful commands
‣ ls – list files

‣ cd – change directory

‣ pwd – print the working directory

‣ pushd, popd, dirs – use a stack to

change directories

‣ cp – copy a file

‣ man – show the manual page

‣ mv – rename (move) a file

‣ mkdir, rmdir – make or delete a

directory

‣ rm – delete a file

‣ chmod – change file permissions

‣ cat – concatenate files

‣ more, less – pagers

‣ head, tail – show first/last lines

‣ grep – match lines

‣ wc – count words

‣ tr – transform characters

‣ split, join, cut, paste

‣ sort, uniq

16

A. /dir/file

B. /dir/dir/file

C. /dir/dir/dir/file

D. All three files

E. None of them (e.g., because it's
an error)

If we have three (poorly named) files with paths 
/dir/file  
/dir/dir/file  
/dir/dir/dir/file  

and we run the two commands 
	 $ cd /dir  

$ rm dir/file  
which file is deleted by the rm command?

17

Two special directory entries
Each directory contains two special entries

‣ .		 the directory itself (pronounced "dot")

‣ .. the directory's parent (pronounced "dot dot")

We can use these in paths

‣ These all refer to the same directory 

	 /usr/bin  
/usr/./bin/.  
/etc/../usr/bin

‣ . is usually only used at the start of a relative path as ./  
	 ./foo

‣ cd .. takes us to the parent directory of the current directory

‣ cd ../.. takes us to the current directory's parent's parent

18

A. /

B. /bin

C. /usr/bin

D. /usr/bin/bin

E. Some other directory

Which directory is listed if we run the following two commands in the shell?

$ cd /usr  
$ ls bin/../../bin

19

Commands
⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Usually start with one or two hyphens

‣ ⟨arguments⟩ are the things the command acts on

• Often file paths or server names or URLs

Example: rm -r foo bar

20

Example meaning

21

Click to go to explainshell.com

https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2
https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2

Option consistency
Related commands often have similar arguments:

‣ $ cp -r	 	 	 Copy directories recursively

‣ $ rm -r	 	 	 Remove directories recursively

‣ $ grep -r	 	 Search for text in files in directories recursively

‣ $ zip -r	 	 Zip directories recursively

But not always

‣ $ ln -r	 	 	 Create links relative to the link location (requires -s)

‣ $ uname -r Print the kernel version

22

23

https://xkcd.com/1168

Learning about arguments/options
Most programs respond to -h, --help, or -help

Many modern programs support commands in addition to arguments

‣ ⟨program⟩ ⟨global-options⟩ ⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ Examples: 
$ git commit  
$ cargo build

‣ These often support a help command like git help

Many programs have manual pages that can be accessed using man

‣ $ man ls	 Shows the manual page for ls

‣ $ man cp	 Shows the manual page for cp

24

Manual (man) pages
man is the system manual

‣ Use this to find out more about Unix programs

‣ $ man cp

whatis show just single line information

‣ also via $ man -f cp

apropos search for keyword, return single lines

‣ also via $ man -k cp

whereis locate binary, source, man page

‣ $ whereis cp  
cp: /bin/cp /usr/share/man/man1/cp.1.gz

25

Sections of the manual
Divided into sections

1. user commands (e.g., cp(1), ls(1), cat(1), printf(1))

2. system calls (e.g., open(2), close(2), rename(2))

3. library functions (e.g., printf(3), fopen(3), strcpy(3))

4. special files

5. file formats (e.g., ssh_config(5))

6. games

7. overview, conventions, and miscellany section

8. administration and privileged commands (e.g., reboot(8))

Use man 3 printf to get info from section 3

‣ You can use man -a printf to get all sections

26

