CS 241: Systems Programming Lecture 31. Huffman Compression

Spring 2020
Prof. Stephen Checkoway

Announcements

Homework 6 is available

- Due 2020-05-13 at 11:00
- Late days cannot be used because I cannot accept any work after the end of the allotted time for finals

Poll on Piazza for when you want the final project due (May 13 is currently winning)

Reminder: There is no final, just the last assignment

Data representation

Data representation

Must have some way of representing information in computers
Computers are binary, so...

Data representation

Must have some way of representing information in computers
Computers are binary, so...
Binary Representation!

Number of bits required for text

a-zA-Z 52 (26 each upper and lower case)
0-9 $\quad 20 \quad$ (10 + shift characters)
other 22 (11 keys and shifted forms)
ws 5 (space, tab, If, cr, vtab)
TOTAL: 99
Need ceil($\left(\log _{2} 99\right)=>7$ bits per character

Character encodings

ASCII - 7 bit

- American national Standard Code for Information Interchange

ISO 8859-1 (Latin-1) - 8-bit code

- Uses ASCII for first half

Unicode - code points in the range 0-0x10FFFF

- UTF-32 - Fixed-length, 32-bit code units
- UTF-16 - Variable-length, one or two 16-bit code units per code point
- UTF-8 - Variable-length, 1-4 8-bit code units per code point
- When most significant bit is 0 , matches ASCII

Data Compression

Idea: reduce the number of bytes needed to represent data
100,000,000,000,000,000,000
100 Quintillion
$1^{* 1} 0^{\wedge} 20$
1 e 20

Lossless Compression

Same information, but with different representation
All information can be recovered
Vs. "Lossy" compression like JPG or MP3

Example - small text file

Assume data with only the letters A-G

- need 3 bits to encode data (represent)

Letter Bit rep Count Bits used

A	000	13	39
B	001	12	36
C	010	10	30
D	011	5	15
E	100	3	9
F	101	1	3
G	110	1	3

Total length: $39+36+30+15+9+3+3=135$

Representing codes as a trie

Represent code using binary trie

- Binary tree
- Values only in leaves
- 0 is left, 1 is right

Encoding

To encode a character, walk the path from the root to the leaf

- Each time you go left, output a 0 bit
- Each time you go right, output a 1 bit

Encode example

How do we encode FED?

Decoding

To decode a character, use the bits to choose which child to take, starting from the root

- If the current node is a leaf, output the corresponding character
- If the next bit is a 0 , move to the left child
- If the next bit is a 1 , move to the right child

Decode example

How do we decode 001100011 ?

What about 000111?

Desirable properties

Full tree

- All sequences of bits are understandable
- All nodes either leaf or has 2 children
- can promote single child

Prefix code

- No code word is the prefix of another
- Therefore, no chars in internal nodes

Optimal Code

- Minimum cost code (\# of bits)

Why do we want the code to be a prefix code? I.e., why do we want it to be the case that no code word is the prefix of another code word?
A. If one code word is the prefix of another, then when decoding, if we see the longer code word, we can't tell if it's the longer one or the shorter one followed by another code word
B. Allowing one code word to be a prefix of another would require longer code words
C. It's easier to represent the code words as a trie if only the leaves have values

After moving the G up

Letter	Bit rep	Count	Bits used
A	000	13	39
B	001	12	36
C	010	10	30
D	011	5	15
E	100	3	9
F	101	1	3
G	11	1	2

Total length: $39+36+30+15+9+3+2=134$

Swap the A and G

Total length: $26+36+30+15+9+3+3=122$

How should we select code words for characters?
A. The least frequent characters should have the shortest code words
B. The most frequent characters should have the shortest code words
C. All code words should have the same length and be ordered alphabetically
D. It doesn't matter how we assign code words to characters

Optimal length code

Letter	Bit rep	Count	Bits used
A	00	13	26
B	01	12	24
C	10	10	20
D	110	5	15
E	1110	3	12
F	11110	1	5
G	11111	1	5

Total length: $26+24+20+15+12+5+5=107$
r

Huffman's Algorithm

Algorithm to create optimal prefix code
David A. Huffman published it in 1952
Idea: keep forest of trees, merge two smallest trees at each step

Huffman's Algorithm

Count the number of times each letter is used
Create list of singleton nodes (trees) per letter with counts as value
While two or more nodes are in the list

- select the two smallest nodes
- make them leaves of a new node whose value is the sum of their counts

Traverse tree to generate strings for all leaf nodes

Example: bad cabbage beef

Counts:

Forest:

Combine:

Example: bad cabbage beef

Counts:

\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	space
3	4	1	1	3	1	1	

Forest:

Combine:

Example: bad cabbage beef

Counts:

$$
\begin{array}{cccccccc}
\hline \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{e} & \mathbf{f} & \mathbf{g} & \text { space } \\
\hline 3 & 4 & 1 & 1 & 3 & 1 & 1 & 2
\end{array}
$$

Combine:

Example: bad cabbage beef

Counts:

$$
\begin{array}{cccccccc}
\hline \mathbf{a} & \mathbf{b} & \mathbf{c} & \mathbf{d} & \mathbf{e} & \mathbf{f} & \mathbf{g} & \text { space } \\
\hline 3 & 4 & 1 & 1 & 3 & 1 & 1 & 2
\end{array}
$$

Combine: $\left.\begin{array}{l}1 \\ d\end{array}\right)\binom{1}{c}$

Example continued

Example continued

Example continued

Example continued

Example continued

Example continued

Letter	Bit rep
a	111
b	10
c	0101
d	0100
e	00
f	0111
g	0110
space	110

In-class exercise

Create a Huffman tree for oberlin college

