
CS 241: Systems Programming

Lecture 29. Static Libraries
Spring 2020

Prof. Stephen Checkoway

1

Code reuse is good!

Why?

2

Multiple forms of code reuse

Source code reuse

‣ Distribute source code that can be included in many programs

Binary code reuse

‣ Distribute binary code that can be linked into programs

‣ Static libraries: code linked in at compile time (actually link time)

‣ Dynamic libraries: code linked in at runtime

3

Static libraries ("archives")

Nothing more than a collection of object files (.o) bundled together

A "foo" library composed of object files a.o, b.o, …, z.o

‣ Traditionally named libfoo.a

‣ Compile object files as normal, e.g., 

$ clang -c -o a.o a.c

‣ Put them in an archive: 

$ ar crs libfoo.a a.o b.o … z.o

We can link our programs with the archive, e.g.,

‣ $ clang -o prog1 prog1.o libfoo.a

‣ $ clang -o prog2 prog2.o libfoo.a

4

ar(1)

ar is the archive utility

‣ It can create archives of arbitrary files

‣ It can add files to or update files in an archive

‣ It can delete or extract files from an archive

$ ar crs libfoo.a a.o b.o … z

‣ c — create an archive

‣ r — add (with replacement) files to the archive

‣ s — create a symbol table

5

An archive Makefile rule

Because ar is designed to update archives, it's easiest to just delete and

recreate it

libfoo.a: a.o b.o c.o

$(RM) $@

$(AR) crs $^

6

Linking with static libraries

The linker (which we usually invoke via the compiler driver clang or gcc) only

includes object files from an archive which are "needed"

For example,

‣ a.c defines void fun1(void);

‣ b.c defines void fun2(void);

‣ c.c defines int blah;

‣ libfoo.a contains a.o, b.o, and c.o

‣ If the program uses fun1() and blah but not fun2() in its main.c then 

$ clang -o prog main.o libfoo.a  

is essentially 

$ clang -o prog main.o a.o c.o

7

Symbols

Symbols have

‣ a name — the identifier used in the program); and

‣ a value — an offset into a section (.text, .data, .bss, etc.)

8

$ readelf -s maze.o

Symbol table '.symtab' contains 59 entries:

 Num: Value Size Type Bind Vis Ndx Name

 45: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND free

 46: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND malloc

 47: 00000000000005e0 135 FUNC GLOBAL DEFAULT 2 maze_free

 48: 0000000000000700 143 FUNC GLOBAL DEFAULT 2 maze_get_cols

Symbols

Symbols have

‣ a name — the identifier used in the program); and

‣ a value — an offset into a section (.text, .data, .bss, etc.)

8

$ readelf -s maze.o

Symbol table '.symtab' contains 59 entries:

 Num: Value Size Type Bind Vis Ndx Name

 45: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND free

 46: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND malloc

 47: 00000000000005e0 135 FUNC GLOBAL DEFAULT 2 maze_free

 48: 0000000000000700 143 FUNC GLOBAL DEFAULT 2 maze_get_cols

UND is undefined

2 is .text (in this case)

Defined/undefined symbols

Defined symbols have a value relative to a section in the object file (or

binary)

Undefined symbols are references to symbols defined in other object files (or

dynamic libraries)

9

Archive symbol table

Maps symbols to object files inside the archive

Created using the s option to ar(1) or the ranlib(1) tool

10

Linking with static libraries

The linker maintains a list of currently undefined symbols, initially empty

For each input files (objects and archives) from left-to-right

‣ If it's an object file, add the contents and symbols to the program

• Remove defined symbols from the undefined symbol list

• Add new undefined symbols to the undefined symbol list

‣ If it's an archive, perform the following until no new object files are added

• If any object file in the archive defines a symbol in the undefined symbol

list, add the object file from the archive as above

11

Linkers add object files from archives that

define currently undefined symbols in a loop.

libex.a contains a.o and b.o. 

prog is linked as 

$ clang -o prog foo.o bar.o libex.a

Which object files are linked into prog?

A. foo.o, bar.o, a.o, and b.o

B. foo.o, bar.o, and a.o

C. foo.o, bar.o, and b.o

D. foo.o, a.o, and b.o

E. foo.o, and bar.o

12

a.o b.o foo.o bar.o

Defined

symbols

fun1 fun2

bar

main

foo

bar

Undefined

symbols

malloc

free

bar

bar

fun1

Duplicate symbols are an error.

libex.a contains a.o and b.o.  

libbar.a contains bar.o.  

prog is linked as  

$ clang -o prog foo.o libex.a \  
 libbar.a

Which object files are linked into prog?

A. foo.o, bar.o, a.o, and b.o

B. foo.o, bar.o, and a.o

C. foo.o, bar.o, and b.o

D. foo.o, a.o, and b.o

E. Duplicate symbol error

13

a.o b.o foo.o bar.o

Defined

symbols

fun1 fun2

bar

main

foo

bar

Undefined

symbols

malloc

free

bar

bar

fun1

Duplicate symbols are an error.

libex.a contains a.o and b.o.  

libbar.a contains bar.o.  

prog is linked as  

$ clang -o prog foo.o libex.a bar.o

Which object files are linked into prog?

A. foo.o, bar.o, a.o, and b.o

B. foo.o, bar.o, and a.o

C. foo.o, bar.o, and b.o

D. foo.o, a.o, and b.o

E. Duplicate symbol error

14

a.o b.o foo.o bar.o

Defined

symbols

fun1 fun2

bar

main

foo

bar

Undefined

symbols

malloc

free

bar

bar

fun1

Moral of the story

Specify your static libraries at the end of the link line

15

Dynamic libraries

Dynamic libraries are produced by the (program) linker and are combined at

run time by the loader (dynamic linker)

We'll talk more about them next time!

16

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-29.html

Grab a laptop and a partner and try to get as much of that done as you can!

17

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-29.html

