
CS 241: Systems Programming

Lecture 27. System Calls II
Spring 2020

Prof. Stephen Checkoway

1

Creating a new process

Two schools of thought

‣ Windows way: single system call

• CreateProcess("calc.exe", /* other params */)

‣ Unix way: two (or more) system calls

• Create a copy of the currently running process: fork()

• Transform the copy into a new process:  

execve("/usr/bin/bc", args, env)

2

Process IDs

Every Unix process has a unique identifier

‣ Integer, used to index into a kernel process table

‣ $ ps ax # Print a list of all running processes and their PIDs

pid_t getpid(void);

Every process has a parent process

‣ processes are "reparented" to the init process if your parent already

died

pid_t getppid(void);

3

Running another program

int execve(char const *path, char *const argv[],  
 char *const envp[]);

‣ Last element of argv[] and envp[] must be 0 (NULL)

‣ If successful, execve won't return, instead, the OS will remove all of

the process's code and data and load the program from path in its

place and start running that

‣ The PID of the process doesn't change

‣ The open file descriptors remain open (unless marked close on exec)

‣ Returns -1 and sets errno on error

4

The types of argv and envp

execve(path, argv, envp) does not modify its arguments

For historical reasons, argv and envp have type

‣ char *const[] — this is a constant pointer to char *

‣ We really want char const *const[] which is a constant pointer to 

char const *

‣ Normally, we pass a char *argv[] array (no const)

5

The types of argv and envp

We can deal with this in one of two ways

‣ For historical reasons, we can assign string literals to char *  
char *s = "foo"; // normally char const *s = "foo";

‣ We can cast a char const * to a char *  
char const *t = /* … */;  
char *u = (char *)t;

‣ If you omit the cast, you get a compiler warning; compiler warnings

should not be ignored

6

#include <err.h>

#include <stdlib.h>

#include <unistd.h>

void run_with_args(char const *program) {

 char *args[] = {

 (char *)program, // argv[0]

 "This is one argument", // argv[1]

 "two", // argv[2]

 "three", // argv[3]

 0, // argv[4] is NULL, end of args

 };

 char *env[] = { 0 }; // Empty environment.

 execve(program, args, env);

 err(EXIT_FAILURE, "%s", args[0]);

}

int main(int argc, char *argv[]) {

 run_with_args(argc == 1 ? "/bin/echo" : argv[1]);

} 7

exec(3) family

int execl(const char *path, const char *arg0, ...,

 (char *)0);

int execle(const char *path, const char *arg0, ...,

 (char *)0, char *const envp[]);

int execlp(const char *program, const char *arg0, ...,

 (char *)0);

int execv(const char *path, char *const argv[]);

int execvp(const char *program, char *const argv[]);

‣ execl, execle, execlp take 0-terminated variable number of arguments

‣ The argv and envp arrays must be 0-terminated

‣ execlp and execvp search PATH for the program

‣ glibc has an execvpe which is like execve but searches the PATH

8

Which of the following statements about execve() is false?

A. If execve() is successful, the new program replaces the calling program.

B. The file descriptors that were open before execve() are open in the new

program (except for those marked as close on exec).

C. If execve() has an error, it returns -1 and sets errno.

D. If execve() is successful, it returns 0.

9

Creating a new process

#include <unistd.h>  
#include <sys/types.h>

pid_t fork(void);

Creates an (almost) identical copy of the running program with one big

exception

‣ Returns 0 to the child but PID of child to the parent

‣ -1 on error and sets errno

This includes a copy of memory, code, file descriptors and most other bit of

process state (but not all)

10

#include <sys/types.h>

#include <sys/wait.h>

#include <err.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

void whoami(char const *str) {

 pid_t self = getpid();

 pid_t parent = getppid();

 printf("%s: pid=%d ppid=%d\n",

 str, self, parent);

}

int main(void) {

 whoami("Prefork");

 pid_t pid = fork();

 if (pid < 0)

 err(EXIT_FAILURE, "fork");

 if (pid == 0) {

 whoami("Child");

 } else {

 whoami("Parent");

 int status;

 wait(&status);

 }

 return 0;

}

11

#include <sys/types.h>

#include <sys/wait.h>

#include <err.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

void whoami(char const *str) {

 pid_t self = getpid();

 pid_t parent = getppid();

 printf("%s: pid=%d ppid=%d\n",

 str, self, parent);

}

int main(void) {

 whoami("Prefork");

 pid_t pid = fork();

 if (pid < 0)

 err(EXIT_FAILURE, "fork");

 if (pid == 0) {

 whoami("Child");

 } else {

 whoami("Parent");

 int status;

 wait(&status);

 }

 return 0;

}

11

Prefork: pid=48627 ppid=28834

Parent: pid=48627 ppid=28834

Child: pid=48628 ppid=48627

fork/exec

Usually used together

fork to create a duplicate process

exec (one of the exec family that is) to run a new program

fork and exec both preserve file descriptors

‣ This is how bash operates: it forks, sets file descriptors, and execs

12

After a fork, you have two copies of a program, the parent and the child,

and...

A. Either the parent or the child must call exec() immediately

B. The parent gets a PID and the child gets a 0 as return values

C. The child gets a PID and the parent gets a 0 as return values

D. Both parent and child get PIDs as the return values

E. Both parent and child must call exec to proceed

13

Process exit status

Can wait for a child process to die (or be stopped, e.g., by a debugger)

#include <sys/wait.h>

int status;  
pid_t pid = wait(&status);

Suspends execution until child terminates, returns the PID of the child

14

Checking exit status

Use macros to examine exit status

WIFEXITED(status)

‣ True if the process terminated normally

WEXITSTATUS(status)

‣ Returns actual return/exit value if WIFEXITED(status) is true

WIFSIGNALED(status)

‣ True if the process was terminated by a signal (e.g., SIGINT from ctrl-C)

WTERMSIG(status)

‣ Returns the signal that terminated the process if WIFSIGNALED(status)

15

strace(1)

strace is a Linux program that prints out the system calls a program uses

‣ -e trace=open,openat,close,read,write will trace those system calls

‣ -f will trace children too

‣ -s size will show up to size bytes of strings

$ strace -e trace=open,openat,close,read,write cat Makefile  
...  
openat(AT_FDCWD, "Makefile", O_RDONLY) = 3  
read(3, "CC := clang\nCFLAGS := -Wall -std"..., 1048576) = 176  
write(1, "CC := clang\nCFLAGS := -Wall -std"..., 176) = 176  
read(3, "", 1048576) = 0  
close(3) = 0  
...

16

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-27.html

Grab a laptop and a partner and try to get as much of that done as you can!

17

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-27.html

