
CS 241: Systems Programming

Lecture 25. Function Pointers
Spring 2020

Prof. Stephen Checkoway

1

Function pointers

Function pointers are pointers that point to…functions

Syntax

‣ return_type (*var)(parameters);

‣ int (*f1)(void); // f1 is a pointer to a function returning an int

‣ struct foo *(*f2)(double, size_t) = blah;

Calling a function pointer (two options)

‣ Pretend it's a function: int x = f1();

‣ Dereference it first: struct foo *p = (*f2)(2.3, 82);

2

Aside: C is super weird

Function call operator (…) only applies to function pointers

Functions decay to pointers to the function

When calling foo(5), foo decays to a pointer and then the call happens

Assuming we have a function void foo(int x), these are identical

‣ foo(3)	 	 // decay -> call

‣ (&foo)(3)	 // address of -> call

‣ (*foo)(3)	 // decay -> dereference -> decay -> call

‣ (*&foo)(3)	// address of -> dereference -> decay -> call

‣ (&*foo)(3)// decay -> dereference -> address of -> call

3

Example

4

#include <stdio.h>

void foo(void) { puts("foo"); }

void bar(void) { puts("bar"); }

void qux(void) { puts("qux"); }

// An array of function pointers

void (*table[])(void) = { foo, bar, qux };

int main(int argc, char *argv[argc]) {

 void (*ptr)(void) = table[argc % 3];

 ptr();

 return 0;

}

An actual use case

int atexit(void (*handler)(void));

‣ Call atexit and pass it a function (pointer)

‣ When the program exits normally (via exit(3) or returning from main),

the function is called

‣ _exit(2) [defined by POSIX] or _Exit(3) [defined by C] don't call

the atexit handlers

‣ Atexit handlers are called in reverse order

‣ Atexit handlers must not call exit(3)

5

What does this code print?

A. 1  

2  

3  

4

B. 1  

3  

2

C. 3  

1  

2

D. 3  

4  

2  

1

E. 3  

2  

1

6

#include <stdio.h>

#include <stdlib.h>

void foo(void) { puts("1"); }

void bar(void) { puts("2"); }

int main(void) {

 atexit(foo);

 puts("3");

 atexit(bar);

 exit(0);

 puts("4");

 return 0;

}

Generic sorting

void qsort(void *base, size_t nel, size_t width,  
 int (*compare)(void const *, void const *));

Takes an array, base, of nel elements, each of size width and a

comparison function, compare and sorts the array

compare gets a pointer to two elements x and y and returns <0, 0, or >0

depending on the x < y, x = y, or x > y

7

Void pointers (void *)

Void pointers are allowed to point to any object

‣ int i = 5;  
float f = 8.2f;  
void *p = NULL; // Valid  
p = &i; // Valid  
p = &f; // Valid

Void pointers can be assigned to any other pointer type

‣ void *p = /* … */;  
double *q = p; // Valid  
struct foo *r = p; // Valid

8

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

enum Rank { ASSISTANT, ASSOCIATE, FULL };

char const *const ranks[] = { "Assistant", "Associate", "Full" };

struct Professor {

 enum Rank rank;

 char const *name;

};

struct Professor profs[] = {

 { .rank = ASSISTANT, .name = "Roberto Hoyle" },

 { .rank = ASSISTANT, .name = "Adam Eck" },

 { .rank = FULL, .name = "John Donaldson" },

 { .rank = ASSISTANT, .name = "Sam Taggart" },

 { .rank = FULL, .name = "Bob Geitz" },

 { .rank = ASSISTANT, .name = "Cynthia Taylor" },

 { .rank = ASSISTANT, .name = "Stephen Checkoway" },

 { .rank = ASSISTANT, .name = "Sanchari Das" }, // New faculty, yay!

};
9

// Compare by descending rank and then ascending names.

int compare_profs(void const *x, void const *y) {

 struct Professor const *p1 = x;

 struct Professor const *p2 = y;

 if (p1->rank > p2->rank)

 return -1;

 if (p1->rank < p2->rank)

 return 1;

 return strcmp(p1->name, p2->name);

}

int main(void) {

 size_t num_profs = sizeof profs / sizeof profs[0];

 qsort(profs, num_profs, sizeof profs[0], compare_profs);  

 for (size_t i = 0; i < num_profs; ++i)

 printf("%s, %s Professor\n", profs[i].name, ranks[profs[i].rank]);  

 return EXIT_SUCCESS;

}
10

$./profs

Bob Geitz, Full Professor

John Donaldson, Full Professor

Adam Eck, Assistant Professor

Cynthia Taylor, Assistant Professor

Roberto Hoyle, Assistant Professor

Sam Taggart, Assistant Professor

Sanchari Das, Assistant Professor

Stephen Checkoway, Assistant Professor

11

// Compare by names only.

int compare_by_names(void const *x, void const *y) {

 struct Professor const *p1 = x;

 struct Professor const *p2 = y;

 return strcmp(p1->name, p2->name);

}

$./profs

Adam Eck, Assistant Professor

Bob Geitz, Full Professor

Cynthia Taylor, Assistant Professor

John Donaldson, Full Professor

Roberto Hoyle, Assistant Professor

Sam Taggart, Assistant Professor

Sanchari Das, Assistant Professor

Stephen Checkoway, Assistant Professor

12

Generic binary search

void *bsearch(void const *key, void const *base,  
 size_t nel, size_t width,  
 int (*compare)(void const *, void const *));

Takes a key; a sorted array, base, of nel elements each of size width; and a

comparison function and returns a pointer to the element matching the key or

NULL if none do

int compare(void const *key, void const *elem);

‣ Compares the key with the element, returning <0, 0, or >0

‣ key and elem need not point to the same type

13

int find_by_name(void const *key, void const *elem) {

 char const *name = key;

 struct Professor const *p = elem;

 return strcmp(name, p->name);

}

// Assuming profs is sorted according to name.

struct Professor *steve;  
steve = bsearch("Stephen Checkoway", profs, num_profs,

 sizeof profs[0], find_by_name);

if (steve)

 puts(ranks[steve->rank]); // Prints "Assistant".

14

What happens if we call bsearch() on an array that isn't sorted? Assume

that the array contains an element that matches the given key.

A. A pointer to the matching element is returned.

B. NULL is returned.

C. Either a pointer to the matching element or NULL is returned, but it's

impossible to say which

D. bsearch() raises an exception

15

Signals (brief intro)

Signals are the mechanism the OS uses to communicate with UNIX

processes

There are a whole bunch of signals (see signal(7) or run $ kill -l)

SIGINT is the signal that is sent when the user presses control-c

A signal handler can be installed for many (but not all) signals

‣ Signal handlers are extremely limited

‣ They can't call most library functions (including malloc(3) and

printf(3))

‣ They should essentially set a variable of type  

volatile sig_atomic_t and return

16

C is ridiculous again

The signal function takes an int and a function pointer as arguments and

returns a function pointer:

void (*signal(int signum, void (*handler)(int)))(int);

This is totally unreadable.

Use a typedef!

‣ typedef void (*sighandler_t)(int);  
sighandler_t signal(int signum, sighandler_t handler);

17

18

#include <signal.h>

#include <stdio.h>

#include <time.h>

#include <unistd.h>

static volatile sig_atomic_t done;

static void handler(int signum) { done = 1; }

int main(void) {

 signal(SIGINT, handler);

 time_t start_time = time(0);

 time_t now = start_time;

 while (!done) {

 printf("The current time is %s", ctime(&now));

 sleep(10);

 now = time(0);

 }

 long diff = now - start_time;

 printf("\e[G\e[K%ld seconds elapsed\n", diff);

 return 0;

}

18

#include <signal.h>

#include <stdio.h>

#include <time.h>

#include <unistd.h>

static volatile sig_atomic_t done;

static void handler(int signum) { done = 1; }

int main(void) {

 signal(SIGINT, handler);

 time_t start_time = time(0);

 time_t now = start_time;

 while (!done) {

 printf("The current time is %s", ctime(&now));

 sleep(10);

 now = time(0);

 }

 long diff = now - start_time;

 printf("\e[G\e[K%ld seconds elapsed\n", diff);

 return 0;

}

$./a.out

The current time is Sun Nov 3 18:36:43 2019

The current time is Sun Nov 3 18:36:53 2019

The current time is Sun Nov 3 18:37:03 2019

26 seconds elapsed

In the previous example, after the signal handler runs, the code essentially

performs

 long diff = time(0) - start_time;

 printf("seconds elapsed\n", diff);  
 exit(0);  

Could this code be placed into the signal handler instead and would that be

a better approach? (Assume start_time were changed to be global.)

A. Yes, that would be better

B. Yes, but it's not any better

C. Yes, but it would be worse

D. No, this code cannot be placed

into the signal handler

19

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-25.html

Grab a laptop and a partner and try to get as much of that done as you can!

20

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-25.html

