
CS 241: Systems Programming 

Lecture 24. Regular Expressions II
Spring 2020


Prof. Stephen Checkoway

1



From last time

.	 	 	 any char


*	 	 	 zero or more


+	 	 	 one or more


?	 	 	 zero or one


^	 	 	 start of a line


$	 	 	 end of the line


[ ]	 	 one of the chars


{m,n}	 at least m, but at most n

( )	 	 group


|	 	 	 alternation


\d		 digits


\D		 nondigit


\w		 word


\W		 nonword


\s		 space


\S		 nonspace


char classes (used inside [  ]):


‣ [:alpha:] 


‣ [:digit:] 


‣ [:xdigit:] 


‣ [:space:] 


‣ etc.

2

} Enhanced regex



sed(1) – stream editor

Usage: $ sed [OPTIONS] command file


‣ if no file, use stdin


‣ original file is not altered unless -i option is used


‣ -E option uses extended (modern) regular expressions


‣ multiple commands can be given using -e command

‣ -n option causes sed to not print each line

3



Sed as a regex find & replace

$ sed 's/regex/replacement/' file

‣ For each line of file, find the first portion of the line that matches regex 

and replace it with replacement


$ sed 's/regex/replacement/g' file

‣ For each line of file, find each portion of the line that matches regex and 

replace them all with replacement

Example: Replace the first "colour" with "color" in a file or stdin


‣ $ echo 'I like the colour blue.' | sed 's/colour/color/'  
I like the color blue. 

4



Sed commands

Command format: [address[,address]]function[arguments]

‣ addresses are optional


Addresses are


‣ line number


‣ $ is the last line of input


‣ /regex/ lines matching the regex

Functions are applied to


‣ each line of input if no addresses are given


‣ each line of input matching the address if one is given, or


‣ between the two addresses (inclusive) if two are given

5



Sed functions

Functions


‣ d – delete line


‣ s – substitute string


‣ p – print line


‣ and many others (check the man page)

6



Sed print/delete examples

7



Sed print/delete examples

sed 'd' lines.txt
‣ delete all lines

7



Sed print/delete examples

sed 'd' lines.txt
‣ delete all lines

sed'2d' lines.txt
‣ delete second line

7



Sed print/delete examples

sed 'd' lines.txt
‣ delete all lines

sed'2d' lines.txt
‣ delete second line

sed -e '1,5d' -e '7d' lines.txt
‣ delete first 5 lines and line 7

7



Sed print/delete examples

sed 'd' lines.txt
‣ delete all lines

sed'2d' lines.txt
‣ delete second line

sed -e '1,5d' -e '7d' lines.txt
‣ delete first 5 lines and line 7

sed'/^#/d' lines.txt
‣ delete all lines starting with an # sign

7



Sed print/delete examples

sed 'd' lines.txt
‣ delete all lines

sed'2d' lines.txt
‣ delete second line

sed -e '1,5d' -e '7d' lines.txt
‣ delete first 5 lines and line 7

sed'/^#/d' lines.txt
‣ delete all lines starting with an # sign

sed -n'/.sh$/p' lines.txt
‣ only print lines ending in .sh

7



Sed print/delete examples

sed 'd' lines.txt
‣ delete all lines

sed'2d' lines.txt
‣ delete second line

sed -e '1,5d' -e '7d' lines.txt
‣ delete first 5 lines and line 7

sed'/^#/d' lines.txt
‣ delete all lines starting with an # sign

sed -n'/.sh$/p' lines.txt
‣ only print lines ending in .sh

sed -n'/^begin/,/^end/p' lines.txt

7



Sed print/delete examples

sed 'd' lines.txt
‣ delete all lines

sed'2d' lines.txt
‣ delete second line

sed -e '1,5d' -e '7d' lines.txt
‣ delete first 5 lines and line 7

sed'/^#/d' lines.txt
‣ delete all lines starting with an # sign

sed -n'/.sh$/p' lines.txt
‣ only print lines ending in .sh

sed -n'/^begin/,/^end/p' lines.txt
‣ only print lines between a begin and end block marker

7



Sed substitution

s/regex/replacement/flags

‣ The first regex match is replaced with the replacement


‣ Groups ( ) are called captures and can be referred to by number in the 

replacement: s/Hello (\w+)!/Goodbye \1!/

Flags


‣ N	 Substitution only the Nth match, e.g., s/regex/replace/3 

‣ g		 Replace all matches in the line, not just the first


‣ p		 Print the line if a substitution was performed (often used with -n)


‣ w file	 Append the line to file

8



more sed examples

9



more sed examples

sed 's/foo/bar/' lines.txt
‣ replace the first foo with bar on each line (foofoo -> barfoo)

9



more sed examples

sed 's/foo/bar/' lines.txt
‣ replace the first foo with bar on each line (foofoo -> barfoo)

sed 's/foo/bar/g' lines.txt
‣ replace each foo with bar on every line (foofoo -> barbar)

9



more sed examples

sed 's/foo/bar/' lines.txt
‣ replace the first foo with bar on each line (foofoo -> barfoo)

sed 's/foo/bar/g' lines.txt
‣ replace each foo with bar on every line (foofoo -> barbar)

sed -e '1,5s/foo/bar/g' -e '7d' lines.txt
‣ replaces each foo with bar on lines 1-5 and deletes line 7

9



more sed examples

sed 's/foo/bar/' lines.txt
‣ replace the first foo with bar on each line (foofoo -> barfoo)

sed 's/foo/bar/g' lines.txt
‣ replace each foo with bar on every line (foofoo -> barbar)

sed -e '1,5s/foo/bar/g' -e '7d' lines.txt
‣ replaces each foo with bar on lines 1-5 and deletes line 7

sed -E 's/(a+)(b+)/\2\1/' lines.txt
‣ flips first adjacent groups of a and b characters (qaaabt -> qbaaat)

9



more sed examples

sed 's/foo/bar/' lines.txt
‣ replace the first foo with bar on each line (foofoo -> barfoo)

sed 's/foo/bar/g' lines.txt
‣ replace each foo with bar on every line (foofoo -> barbar)

sed -e '1,5s/foo/bar/g' -e '7d' lines.txt
‣ replaces each foo with bar on lines 1-5 and deletes line 7

sed -E 's/(a+)(b+)/\2\1/' lines.txt
‣ flips first adjacent groups of a and b characters (qaaabt -> qbaaat)

sed -n -e '/^begin/,/^end/s/foo/bar/gp' lines.txt
‣ changes all foo to bar between begin & end, then prints just those lines

9



What is the sed expression to delete all instances of the string 

" newfangled" from from the input? (There's a space before the n.)

A. sed -E '/ newfangled/d'

B. sed -E 'd/ newfangled/'

C. sed -E 's/ newfangled/d/'

D. sed -E 's/ newfangled//'

E. sed -E 's/ newfangled//g'

10



What is the sed command that swaps the first two word separated by a 

space in each line?

A. sed -E 's/(\w+) (\w+)/\2 \1/'

B. sed -E 's/(\W+) (\W+)/\2 \1/'

C. sed -e 's/(\w+) (\w+)/\2 \1/'

D. sed -e 's/\(w+\) \(\w+\)/\2 \1/'

11

\w matches a "word" character


\W matches a "nonword" character


+ means 1 or more



Other software

less(1)


‣  search (type a /) searches for a regex


vim(1)


‣ search (type a / in command mode) searches for a basic regex


‣ substitution :[range] s/regex/replacement/flags

‣ Vim's regex are strange, it has a "magic mode" and a "very magic 

mode"


Most other programmer-oriented editors have regex find and replace

12



Regex in Python

re module contains all of the regular expression functions and classes


r = re.compile(pattern) # returns an object that can be used to


‣ r.match(string) # tries to match the whole string


‣ r.search(string) # finds the first match


re.match(pattern, string) and re.search(pattern, string)

‣ Performs the compilation for you


match() and search() return a match object m (or None)


‣ m.group() returns the whole matched string


‣ m.group(n) returns the nth matched group

13



#!/usr/bin/env python3
import re

# A primitive regex for URLs
url_regex = re.compile(r'([^:]+)://([^/]+)(/.*)?')

url = 'https://www.cs.oberlin.edu/classes/department-honors/'
match_obj = url_regex.match(url)
if match_obj:
    print("Scheme:", match_obj.group(1))
    print("Host:", match_obj.group(2))
    print("Path:", match_obj.group(3))
else:
    print("Not a match")

14

https://www.cs.oberlin.edu/classes/department-honors/


#!/usr/bin/env python3
import re

# A primitive regex for URLs
url_regex = re.compile(r'([^:]+)://([^/]+)(/.*)?')

url = 'https://www.cs.oberlin.edu/classes/department-honors/'
match_obj = url_regex.match(url)
if match_obj:
    print("Scheme:", match_obj.group(1))
    print("Host:", match_obj.group(2))
    print("Path:", match_obj.group(3))
else:
    print("Not a match")

14

$ ./regex.py
Scheme: https
Host: www.cs.oberlin.edu
Path: /classes/department-honors/

https://www.cs.oberlin.edu/classes/department-honors/


Regex in C

#include <regex.h>
int regcomp(regex_t *restrict preg, char const *pattern,  
            int cflags);
int regexec(regex_t const *preg, char const *string,  
            size_t nmatch, regmatch_t pmatch[nmatch],  
            int eflags);
void regfree(regex_t *preg);

Need to pass in 1 more regmatch_t object than capture groups


‣ pmatch[0] is whole match, pmatch[n] is nth matched group


‣ pmatch[n].rm_so is offset to the start of a match


‣ pmatch[n].rm_eo is offset to the first char after the match

15



#include <regex.h>
#include <stdio.h>

int main(void) {
  regex_t url_regex;
  regmatch_t match[4];
  regcomp(&url_regex, "([^:]+)://([^/]+)(/.*)?", REG_EXTENDED);
  char const *url = "https://www.cs.oberlin.edu/classes/department-honors/";
  if (!regexec(&url_regex, url, 4, match, 0)) {
    int match_len = match[1].rm_eo - match[1].rm_so;
    printf("Scheme: %.*s\n", match_len, &url[match[1].rm_so]);
    match_len = match[2].rm_eo - match[2].rm_so;
    printf("Host: %.*s\n", match_len, &url[match[2].rm_so]);
    if (match[3].rm_so >= 0) {
      match_len = match[3].rm_eo - match[3].rm_so;
      printf("Path: %.*s\n", match_len, &url[match[3].rm_so]);
    }
  } else {
    puts("No match!");
  }  
  regfree(&url_regex);
  return 0;
} 16

https://www.cs.oberlin.edu/classes/department-honors/


Regex in Bash

[[ string =~ regex ]]


‣ Returns 0 (true) if the string matches the regex


‣ Matches are stored in the Bash array variable BASH_REMATCH


‣ ${BASH_REMATCH[0]} is the whole matched string


‣ ${BASH_REMATCH[n]} is the nth matched group


url='https://www.cs.oberlin.edu/classes/department-honors/'
if [[ ${url} =~ ([^:]+)://([^/]+)(/.*)? ]]; then
  echo "Scheme: ${BASH_REMATCH[1]}"
  echo "Host: ${BASH_REMATCH[2]}"
  echo "Path: ${BASH_REMATCH[3]}"
else
  echo "No match!"
fi 17

https://www.cs.oberlin.edu/classes/department-honors/


Regex in Bash are tricky!

This doesn't work 

course='CS 241'
if [[ ${course} =~ ([[:alpha:]]*) ([[:digit:]]*) ]]; then

18



Regex in Bash are tricky!

This doesn't work 

course='CS 241'
if [[ ${course} =~ ([[:alpha:]]*) ([[:digit:]]*) ]]; then

18

if [[ ${course} =~ ([[:alpha:]]*) ([[:digit:]]*) ]]; then
^-- SC1009: The mentioned parser error was in this if expression.
   ^-- SC1073: Couldn't parse this test expression.
                                  ^-- SC1072: Expected test to end here



Regex in Bash are tricky!

So what about quoting the regex?


if [[ ${course} =~ '([[:alpha:]]*) ([[:digit:]]*)' ]]; then

19



Regex in Bash are tricky!

So what about quoting the regex?


if [[ ${course} =~ '([[:alpha:]]*) ([[:digit:]]*)' ]]; then

19

$ ./regex2.sh
No match!



Regex in Bash are tricky!

So what about quoting the regex?


if [[ ${course} =~ '([[:alpha:]]*) ([[:digit:]]*)' ]]; then

19

$ ./regex2.sh
No match!

if [[ ${course} =~ '([[:alpha:]]*) ([[:digit:]]*)' ]]; then
                   ^-- SC2076: Don't quote rhs of =~,
                               it'll match literally rather than as a regex.



Regex in Bash are tricky!

We need to escape the space


if [[ ${course} =~ ([[:alpha:]]*)\ ([[:digit:]]*) ]]; then

You can also put the regex in a variable


regex='([[:alpha:]]*) ([[:digit:]]*)'
if [[ ${course} =~ ${regex} ]]; then

20



In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-24.html


Grab a laptop and a partner and try to get as much of that done as you can!

21

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-24.html

