
CS 241: Systems Programming

Lecture 20. File I/O in C
Spring 2020

Prof. Stephen Checkoway

1

Streams

C's view of Input/Output

Sequence of bytes

Physical I/O characteristics are concealed (it's an abstraction)

‣ Files

‣ Terminal

‣ Network

‣ Devices

2

Unix I/O

Unix treats all I/O as reading or writing a file

‣ mice

‣ printer

‣ keyboard

‣ networking

‣ screen

‣ disk files

Lower level I/O will be covered later (file descriptors)

3

File pointers

C standard library uses file pointers to associate a file with a stream

 FILE *stdin;

Treat as opaque

‣ You can't manipulate the FILE structure's members directly, must use

functions

4

Buffering

Output data is stored in a buffer (an array) when writing until there is

"enough" data to write to the device

Buffering types

‣ Unbuffered: data is written to device immediately

‣ Line buffered: data is written after each newline

‣ Fully (or block) buffered: data is written in blocks once the block is full

int fflush(FILE *file);

5

Standard file pointers in Unix

stdin	 — Line buffered if connected to a terminal; otherwise fully buffered

stdout	 — Line buffered if connected to a terminal; otherwise fully buffered

stderr	 — Unbuffered

Recall redirection and pipelines

‣ ./a.out < input.txt > output.txt

‣ ./a.out | filter1 | filter2 > output.txt

6

Opening files as streams

FILE *fopen(char const *filename, char const *mode);
‣ NULL on error, errno set to indicate error

Mode:

‣ "r"		 reading, at beginning

‣ "r+"	 read/write, at beginning

‣ "w"		 write, create/truncate

‣ "w+"	 read/write, create/truncate

‣ "a"		 write, create, always at end

‣ "a+"	 read/write, create, always at end

‣ In addition to +, there are also modifiers b for binary streams and x for
eXclusive (fopen(path, "wx") fails if path already exists)

7

If we want to read the contents of a text file into memory, modify it, and then

write it back to the same file, which call to fopen() should we use?

A. FILE *fp = fopen(path, "r+");

B. FILE *fp = fopen(path, "w+");

C. FILE *fp = fopen(path, "a+");

D. FILE *fp = fopen(path, "rb");

E. FILE *fp = fopen(path, "wx");

8

Stream I/O single char

int getchar(); // gets a char from stdin

int getc(FILE *stream); // macro

int fgetc(FILE *stream); // actual function

int putchar(int c); // writes a char to stdin

int putc(int c, FILE *stream); // macro

int fputc(int c, FILE *stream); // function

9

Stream I/O multiple chars

// Reads a line (up to a maximum size)

char *fgets(char *str, size_t size, FILE *stream);

// Writes str to stdout and appends a newline

int puts(char const *str);

// Writes str to file but does not append a newline

int fputs(char const *str, FILE *stream);

10

Analogous to puts() vs. fputs(), there's a function 

char *gets(char *str);  
that reads a line from stdin and stores it in str.

This function should never be used under any

circumstance!

Why not?

A. Including the function was a

mistake by the C designers

B. There's no bounds checking on

the input

C. A too-long line may crash the

program

D. A too-long line may let an attacker

take control of the program

E. All of the above

11

Checking for EOF/error

int feof(FILE *stream); // returns nonzero if stream is at the end

int ferror(FILE *stream); // returns nonzero if stream had an error

12

#include <stdio.h>

int main(int argc, char *argv[argc]) {
 FILE *input = fopen(argv[1], "r");
 FILE *output = fopen(argv[2], "w");
 char str[1024];

 while (fgets(str, sizeof str, input) != 0) {
 if (fputs(str, output) == EOF)
 break;
 }
 if (ferror(input) || ferror(output))
 return 1;
 return 0;
}

13

Error information

#include <stdio.h>  
#include <errno.h>

extern int errno; // libc funcs set this on failure
char *strerror(int errnum); // human-readable error string
void perror(char const *str); // prints error on stderr

perror(str) is (essentially)

if (str != 0 && str[0] != 0)
 fprintf(stderr, "%s: %s\n", str, strerror(errno));
else
 fprintf(stderr, "%s\n", strerror(errno));

14

Exit values

When errors occur, may want to terminate program

void exit(int status);

EXIT_SUCCESS	 — value 0, c99 standard

EXIT_FAILURE	 — some value other than 0, (usually 1) c99 standard

BSD has tried to standardize other values

‣ /usr/include/sysexits.h

15

Closing a stream

int fclose(FILE *stream);

‣ Returns 0 if successful

‣ EOF on error (see errno)

Can close stdin, stdout, stderr if unneeded

‣ There is a limit to the number of files allowed to be open at once

16

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[argc]) {
 if (argc != 2) {
 fprintf(stderr, "Usage: %s FILE\n", argv[0]);
 exit(EXIT_FAILURE);
 }
 FILE *fp = fopen(argv[1], "w");
 if (!fp) {
 perror(argv[1]);
 exit(EXIT_FAILURE);
 }
 fputs("Created for CS 241\n", fp);
 fclose(fp);
 return EXIT_SUCCESS;
} 17

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-20.html

Grab a laptop and a partner and try to get as much of that done as you can!

18

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-20.html

