CS 241: Systems Programming
Lecture 19. Linked Lists

Spring 2020
Prof. Stephen Checkoway



New lecture fo

Ask questions
IN chat

Make sure
you're asking
everyone

Follow up by
unmuting

Clicker
questions via
polls

(i) & @ Recording

Example slides

Y oW & 2 @ W @

Unmute Start Video Invite Participanis Share Screen Chat Reactions

5 Click Chat button

& View Options v




Aside: returning multiple values

In Python, functions can return multiple values (it returns a tuple)
def example():
return "example", 5

In C, functions cannot; instead
> Return a struct
struct ret val { char const *s; int 1; };
struct ret val examplel(void) {
struct ret val r = { .s = "example”, .1
return r;

5 };



Returning multiple values (cont)

> Add pointer parameters
char const *example2(int *out) {
*out = 5;
return "example”;

}

> Use global variables
int example ret;
char const *example3(void) {
example ret = 5;
return "example';

}



Aside 2: Avoid globals

Avoid global variables when practical

Globals
> make your code difficult to reason about
> make writing correct multi-threaded code extremely difficult
> make testing individual functions difficult
> pollute the namespace because they are available everywhere
> can cause implicit coupling between separate functions

Sometimes globals are fine...but they're often not what you want



How should a function return multiple values (in most cases)

A. Return a struct
B. Using pointer parameters

C. Using global variables
D. AorB

E. A, B,orC




Review from Data Structures

A (singly) linked list is a data structure that implements the List ADT
» Add, Insert, remove elements
> Ordered by position in the list

Each node contains
> An element of the list
> A pointer to the next element in the list or O (NULL) for the last node



Review from Data Structures

The list itself usually contains a pointer to the head of the list (first node) and
the tail of the list (last node)



Data types for a list of ints

typedef struct Node {
struct Node *next;
int data;

} Node;

typedef struct List {
Node *head;
Node *tail;

} List;



Appending to the list




Appending to the list

1. Create a new node with next = 0 and data set to the new element

11



Appending to the list

1. Create a new node with next = 0 and data set to the new element
2. Update tail->next to point to the new node

12



Appending to the list

1. Create a new node with next = 0 and data set to the new element
2. Update tail->next to point to the new node
3. Update tail to point to the new node

13



Appending to the list

void list append(List *1list, int data) {
// Create a new node.
Node *node = malloc(sizeof *node);
node->next = 0;
node->data = data;
// Update tail->next to point to the new node.
list->tail->next = node;
// Update tail to point to the new node.
list->tail = node;

14



What happens if we void list append(List *list, int data) {

append to an empty
list using this code?

}

// Create a new node.

Node *node = malloc(sizeof *node);
node->next = 0;

node->data = data;

// Update tail->next to point to the
// new node.

list->tail->next = node:

// Update tail to point to the new node.
list->tail = node;

A. head and tail both point to the C. tail points to the new node and

new node

head is 0

B. head points to the new node and D. head and tail are both O

tallis O

E. Undefined behavior




Appending the first element

Set the head and tail pointers to point to the new node



Appending to the list

void list append(List *list, int data) {
// Create a new node.

Node *node = malloc(sizeof *node);
node->next = 0;
node->data = data;
if (list isempty(list)) {
// Insert the first element in the list.
list->head = node;
list->tail = node;
} else {
// Update tail->next to point to the new node.
list->tail->next = node;
// Update tail to point to the new node.
list->tail = node;



Isempty and size

// Returns true if the list is empty.
bool list i1sempty(List const *list) {
return list->head == 0;

}

// Return the list size.
size t list size(List const *1list) {

size t size = 0;
for (Node const *node = list->head; node; node = node->next)
++s1ze;

return size;

18



What steps should we follow to prepend an element to the beginning of a

nonempty linked list
void list prepend(List *list, int data);

A. — Create a new node n containing the element
— Set n->next to 1ist->head
— Set 1ist->head ton

B. — Create a new node n containing the element

—Set 1ist->head ton
— Set n->next to 1ist->head

C. — Create a new node n containing the element
— Set 1ist->head ton

—Set 1ist->tail ton




In-class exercise

https:.//checkoway.net/teaching/cs241/2029-spring/exercises/Lecture-19.html

Grab a laptop and a partner and try to get as much of that done as you can!

Update: Spend some time working on these by yourself or with a partner
for the "participation points" during the week

Ask questions via Piazza (and post code)

A place to record the exercises you have done for the week will be on
Blackboard on Friday and will be available for another week

You don't need to complete the exercise to get credit, but | recommend it

20


https://checkoway.net/teaching/cs241/2029-spring/exercises/Lecture-19.html

