
CS 241: Systems Programming

Lecture 16. Enums and Structs
Spring 2020

Prof. Stephen Checkoway

1

Course project

Work in groups of 4 (one group of 3)

A written proposal (750 words) is due in one week (Monday)

I'll give feedback on the proposal by spring break

A written status update (750 words) is due on April 12

The completed project and report (2000 words) is due on May 3

7 minute presentations will be the last day of class, May 8

2

Requirements

Must involve a significant amount of effort (more than one or two people

could do alone)

‣ all partners are expected to contribute to the implementation, the write

ups, and the presentation

‣ division of labor within each part is expected and good!

Involve a significant new programming technology you haven't used before

‣ a new language (C, C++, C#, Rust, Go, Ruby, Haskell, JavaScript, etc.),

or

‣ significant use of a framework or library (e.g., Django for Python or

some graphical framework for Java)

3

Requirements

Collaboration must happen on GitHub

‣ This means regular commits

‣ I strongly recommend you learn about pull requests and use them along

with code review of each commit before it gets pushed to master

‣ Using GitHub issues to track bugs that need to be fixed or features that

need to be implemented is a great idea

Your code must contain tests similar to what we've done with the homework

‣ Find and use the appropriate tests for your language/framework

‣ You must use Travis CI to perform automated testing

4

What you do is up to you!

Suggestions

‣ Program a microcontroller (like an Arduino) to use some sensors and

lights/actuators to do something (you can test with a simulator)

‣ Implement a game (e.g., Mancala, checkers) using some game building

framework (SDL, PyGame, etc.)

‣ Use OpenCV to do something with computer vision

‣ Implement some machine learning algorithms (like k-means or k-

nearest neighbors) and run them on some interesting datasets http://

archive.ics.uci.edu/ml/index.php and do some visualization

‣ Build an interactive website

‣ Make some interactive art (audio and video)

5

Proposals

Due next Monday (2020-03-16) by the end of the day

Tell me

‣ what you are doing

‣ how are you doing it

‣ what you need to learn to do it

‣ a proposed schedule with milestones (the status report will discuss the

milestones, you might want to track these on GitHub)

Be ambitious but realistic!

‣ Be explicit about which features are essential, which are nice-to-have

that you plan to do, and which are stretch goals

6

Report

A 2000 word (maximum!) write up

‣ standalone description of your project

‣ what you accomplished

‣ what you weren't able to get to

‣ what you found most challenging

‣ anything else you think I should know

Due the Sunday before presentations (2020-05-03)

7

Demo and presentation

Last week of class (there will be a sign up for the day later in the semester)

Spend 7 minutes showing off and talking about your project

‣ 5 minutes of talking; 2 minutes of answering questions

‣ I know public speaking is awful (unless you enjoy it), but this is a super

low-stakes way to get practice at it in a supportive environment

‣ Everybody must speak

‣ (Attendance at both days of presentations is mandatory, I will check

with clickers)

‣ Tell us who you are, what you did, and how you did it (tell us what didn't

work if you like)

‣ Show off some features

‣ ! ! ! Get some applause ! ! !

8

Enumerations: named constants

Anonymous, implicit values

‣ enum {  
 FOO, // has value 0  
 BAR, // has value 1  
 QUX, // has value 2  
};

‣ These are integers 

int x = FOO;

9

Named enums

You can name the enum

‣ enum Color {  
 RED,  
 YELLOW,  
 GREEN,  
 /* etc. */  
};

‣ This defines a new integer type 
enum Color c = YELLOW;

Useful in switch statements 

switch(c) {  
case RED:  
 return "red";  
case YELLOW:  
 return "yellow";  
case GREEN:  
 return "green";  
/* etc. */  
}

‣ Compiler can check you

covered all cases

10

Explicit values

enum Permission {  
 READ_PERM = 1 << 2,  
 WRITE_PERM = 1 << 1,  
 EXEC_PERM = 1 << 0,  
 RWX_PERM = READ_PERM | WRITE_PERM | EXEC_PERM,  
};

/* We can use them as normal integers */  
enum Permission no_exec(enum Permission perm) {
 return perm & ~EXEC_PERM;
}

11

enum Permission {  
 READ_PERM = 1 << 2,  
 WRITE_PERM = 1 << 1,  
 EXEC_PERM = 1 << 0,  
 RWX_PERM = READ_PERM | WRITE_PERM | EXEC_PERM,  
};

What value does EXEC_PERM + 4 have?

A. READ_PERM

B. RWX_PERM

C. 4

D. 5

E. Undefined behavior

12

Structures

Group related data together by creating a new type

struct Point {
 float x;
 float y;
};

Create and initialize a new Point named p

struct Point p = {
 .x = -33.8f,
 .y = 20.0f,
};

13

Nested structs
Structs can contain other structs (or arrays or arrays of structs or…)

struct Quadrilateral {
 struct Point vertex[4];
};

We can initialize a Quadrilateral

struct Quadrilateral rhombus = {
 .vertex = {
 [0] = { .x = 0.0f, .y = 0.0f },
 [1] = { .x = 1.0f, .y = 0.0f },
 [2] = { .x = 0.5f, .y = 1.0f },
 [3] = { .x = 1.5f, .y = 1.0f },
 },
};

14

Accessing a struct's members

struct Point has two members, x and y

‣ p.x = 100.4f;

‣ printf("%f\n", p.y);

struct Quadrilateral has one member vertex which is an array

‣ rhombus.vertex // gives a pointer to the first vertex

‣ rhombus.vertex[3].x = 0.0f;

15

C has structure values

We can pass a structure (by value) to a function or return one 

struct Quadrilateral embiggen(struct Quadrilateral q) {
 for (int i = 0; i < 4; ++i) {
 q.vertex[i].x *= 2.0f;
 q.vertex[i].y *= 2.0f;
 }
 return q;
}

16

struct Foo {  
 int y;  
};  
struct Bar {  
 int z;  
 struct Foo f;  
};

Given a struct Bar named b, how do you modify b's f's y member?

A. struct Foo f = b.f;  
f.y = 35;

B. b.f.y = 35;

C. b.Foo.y = 35;

D. Both A and B

E. All of A, B, and C

17

Pointers to structs

18

// Use a pointer to a struct to update in place.
void embiggen2(struct Quadrilateral *q) {
 for (int i = 0; i < 4; ++i) {
 (*q).vertex[i].x *= 2.f; // Dereference q, then access vertex
 (*q).vertex[i].y *= 2.f; // Dereference q, then access vertex
 }
}

// Same as embiggen2, but using ->
void embiggen3(struct Quadrilateral *q) {
 for (int i = 0; i < 4; ++i) {
 q->vertex[i].x *= 2.f;
 q->vertex[i].y *= 2.f;
 }
}

struct Foo {  
 int y;  
};  
struct Bar {  
 int z;  
 struct Foo *f;  
};

Given a struct Bar named b, how do you modify b's f's y member?

A. struct Foo *f = b.f;  
f->y = 35;

B. b.f->y = 35;

C. b->f.y = 35;

D. Both A and B

E. All of A, B, and C

19

Anonymous structs

Like enums, structs can be anonymous

struct {
 char *const name;
 enum { STUDENT, GRADER, PROFESSOR } role;
} people[] = {
 [0] = { .role = PROFESSOR, .name = "Stephen" },
 [1] = { .role = GRADER, .name = "Max" },
 /* ... */
};

‣ people is an array of this anonymous struct

‣ the role member is an anonymous enum

‣ note that the initializer need not list members in order

‣ we could make this whole thing const by writing const struct

20

Compound literals

Compound literal: (type) { initializer }

‣ (struct Point) { .x = 5.f, .y = 80.3f }

This has pretty limited use since you can just declare and initialize an

instance of the struct

Macros are about the only time it's useful

#define MAKE_POINT(x_coord, y_coord) \

 (struct Point) { .x = (x_coord), .y = (y_coord) }

21

Type definitions

It's pretty clunky referring to things as enum Foo or struct Bar

Use a typedef!

‣ Generic form: typedef From To;

‣ Examples  

typedef struct Point Point;  
typedef enum Color Color;

You can typedef an anonymous struct  

typedef struct {
 float x;
 float y;
} Point;

22

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-16.html

Grab a laptop and a partner and try to get as much of that done as you can!

23

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-16.html

