CS 241: Systems Programming
Lecture 14. Pointers and Arrays

Spring 2020
Prof. Stephen Checkoway

Arrays In Java

Arrays In Java are normal Objects created with new

int[] arr new 1nt[100];
They're indexed from 0 to arr.length-1

Attempts to access out of bounds elements leads to
ArrayIndexOutOfBoundsExceptions

They can be passed to functions or returned from function

Arrays in C

int arrl[100]; // Fixed-size array
double arr2[x]; // Variable-sized array

unsigned char arr3[x][y][z]; // Multi-dimensional array

Arrays are indexed from O to one less than their bound

> Arrays don't keep track of their length
> Accessing an array outside its bound is undefined behavior:

— An array subscript 1s out of range, even if an object 1s apparently accessible with the
given subscript (as in the lvalue expression a[1] [7] given the declaration int

al[4] [5]) (6.5.6).

Arrays cannot be returned from functions (but can sort of be passed to them)

Initializing arrays

Like all other variables in C, arrays need to be initialized
> EXxception: global variables are initialized to all zeros

Fixed-sized arrays can be initialized with an initializer
» int a[5] ={0}; // sameas{0,0, 0,0,
> int b[5] = {1, 2, 3 };//sameas{1,2,3,0
» int c¢[] = { 1, 2, 3 }; //bhaslength3
> int d[5] = { [3] =1, [4] = 2, [0] = 3 };
//sameas{3,0,0,1,2}
> int e[] = { [3] =1, [0] = 3 };//sameas{3,0,0,1}

0}
0}

Variable-sized arrays cannot be initialized with an initializer

Which of the following defines an array of four integers with the Oth element
set to 57?

Aside about style

Aside about style

Using multiple lines can improve readabillity
> But do it only when it does (it probably doesn't here)
int a[] = {
37,
42, // Trailing commas are fine

}i

Aside about style

Using multiple lines can improve readabillity
> But do it only when it does (it probably doesn't here)
int a[] = {
37,
42, // Trailing commas are fine

}i

Explicit indices in the initializer, like [3] = 5, can help
> Use them when readabillity is improved
int a[] = {
[0] = 37,
[1] = 42,
i

Initializing a variable sized array

// Option 1. Loop over each element and assign it a value
void foo(size t count) {
int arr[count];

for (size t 1dx = 0; 1dx < count; ++1dx)
arr[i1dx] = 0;
//
}
// Option 2. Use memset() from string.h

#include <string.h>
void bar(size t count) {
int arr[count];
memset (arr, 0, sizeof arr);

//

Size and length of an array

Size and length of an array

For arrays that are not function parameters, e.g.,
int a[5];
int b[x];
we can use sizeof to get the size (in bytes) and length

Size and length of an array

For arrays that are not function parameters, e.g.,
int a[5];
int b[x];
we can use sizeof to get the size (in bytes) and length
> Size
size t sizel
size t size?2

sizeof a; // 5 * sizeof(int)
sizeof b; // x * sizeof(int)

Size and length of an array

For arrays that are not function parameters, e.g.,
int a[5];
int b[x];
we can use sizeof to get the size (in bytes) and length
> Size
size t sizel

sizeof a; // 5 * sizeof(int)

size t size2 = sizeof b; // x * sizeof(int)
> Length
size t lenl = sizeof a / sizeof a[0];
// sizel / sizeof(int) = 5
size t len2 = sizeof b / sizeof b[0];

// size2 / sizeof(int) = X

#include <stdio.h> -
e i FUNCHION parameters
void make identity(size t n, double arr[n][n]) {

for (size t row = 0; row < n; ++row) {

for (size t col = 0; col < n; ++col) {
arr[row][col] = (row == col ? 1.0 : 0.0);

}
}
}

int main(int argc, char *argv[argc]) {
size_t dim = (argc > 1 ? atoi(argv[l]) : 2);
double ident[dim][dim]; // Danger of crashing with large dim!

make identity(dim, ident);
for (size t row = 0; row < dim; ++row) {
for (size t col = 0; col < dim; ++col) {
printf("%.1f ", i1dent[row][col]);

}
putchar('\n');

}

return 0;

} 9

e o FUnction parameters

void make identity(size t n, double arr[n][n]) {
for (size t row = 0; row < n; ++row) {
col < n; ++col) {

for (size t col = 0;
arr[row][col] = (row == col ? 1.0 : 0.0);

}
} Array syntax for main
}

int main(int argc, char *argv[argc]) {
size_t dim = (argc > 1 ? atoi(argv[l]) : 2);
double ident[dim][dim]; // Danger of crashing with large dim!

make identity(dim, ident);
for (size t row = 0; row < dim; ++row) {
for (size t col = 0; col < dim; ++col) {
printf("%.1f ", i1dent[row][col]);

}
putchar('\n');

}

return 0;

} 9

#include <stdio.h> -

e o FUNCHION parameters

void make identity(size t n, double arr[n][n]) {
for (size t row = 0; row < n; ++row)

for (size t col = 0; col < n; ++col) {
arr[row][col] = (row == col ?2 1.0 : 0.0); Not passed by value!

There are no array values in C

} Array syntax for main

int main(int argc, char *argv[argc]) {
size_ t dim = (argc > 1 ? atoi(argv[l]) : 2);
double ident[dim][dim]; // Danger of crashing with large dim!

make identity(dim, ident);
for (size t row = 0; row < dim; ++row) {
for (size t col = 0; col < dim; ++col) {
printf("%.1f ", i1dent[row][col]);

}
putchar('\n');

}

return 0;

} 9

e o FUnction parameters

void make identity(size t n, double arr[n][n]) {
for (size t row = 0; row < nj;
for (size t col = 0; col < n;j;
arr[row][col] = (row == : 0.0); Not passed by value!

There are no array values in C

}
} Array syntax for main
}

int main(int argc, char *argv[argc]) {
size_ t dim = (argc > 1 ? atoi(argv[l]) : 2);
double ident[dim][dim]; // Danger of crashing with large dim!

make identity(dim, ident);
for (size t row = 0; row < dim; ++row) { S ./matrix 3
for (size t col = 0; col < dim; ++col) {
printf("%.1f ", i1dent[row][col]);

}
putchar('\n');

}

return 0;

} 9

C's memory model: Objects

C has a bunch of "objects"” (not at all like the Java notion of an object!)
> Each object is a collection of bytes
> Every variable definition creates a new, distinct object
> Literals (e.qg., the string literal "foo") are objects
» sizeof object — gives the size of an object
» sizeof (type) — gives the size of an object with type type
int x;
assert(sizeof x == sizeof(int));

10

Object lifetimes

Objects have a lifetime
> Local variables live as long as they are in scope
> Global variables (including file and function static) live the whole

program
> Temporary objects (returned from functions) live only until the end of the

expression with the function call (we can mostly ignore these)
> We can dynamically create objects and manage their lifetimes (later)
> Accessing an object outside its lifetime is undefined behavior

11

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) { “Suln’

if (n <= 1)
return n;
return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) {
if (n <= 1)
return n;

return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

Object example

#include <stdio.h>

Objects

unsigned int slow fib(unsigned int n) { “Suln’

if (n <= 1)
return n;
return slow fib(n-1) + slow fib(n-2);

}

int main(void) {
unsigned int X 2;
unsigned int fx = slow fib(X);
printf("%u\n", £x);
return O;

12

What most machines do

Memory is a giant array of bytes (this is a lie the OS presents to applications)
> Each object lives in some contiguous sequence of bytes in this array

Some of this memory is filled with program and library code

A region of the memory, the stack, stores the local variables for functions
> Each function call allocates more space on the stack (called a stack

frame) for its local variables

A region of the memory, the heap, stores dynamically created data (we'll talk
more about this later)

13

Memory Layout x86 (simplified)

Stack and Heap grow towards each other
> Efficient use of space

N
1o

Memory

Stack

l
|

Heap

Stacks grow "down" in x86 (not all do)

BSS (uninitialized)
Data (1nitialized)
Text (Code)

14

ack frames

Frame
for

main()

Frame
for a()

retan from

b{)

15

rrame
tox

main ()

rrame
for al)

srame
tor
maainl)

srame
tor al)

rrame
for ci)

al) calls (0

retun from

of)

retion Tom
5
al)

Object addresses

Object addresses

Each object has an address

Object addresses

Each object has an address
> |In C, an address is just a way to refer to an object

10

Object addresses

Each object has an address
> |In C, an address is just a way to refer to an object
> |n reality, an address is just the index into the array-of-bytes-that-is-all-
of-memory of the first byte of the object

10

Object addresses

Each object has an address
> |In C, an address is just a way to refer to an object
> |n reality, an address is just the index into the array-of-bytes-that-is-all-
of-memory of the first byte of the object

> The address-of unary operator, &, gives the address of the object
int x = 37;
int y = 42;
printf("x has value %d and address %p\n", x, &X);
printf("y has value %d and address %p\n", y, &y);

S ./addr
X has value 37 and address 0x7ffeelld21Db8
y has value 42 and address 0x7ffeelld21bd

10

Pointers

A pointer Is an object whose value is the address of some object
> |f x Is an object (say a double), and p is a pointer whose value is &x,
then we say "p points to x"

Every pointer has a type that tells you what the type of the pointed-to object
IS
> double x = 10.4;
double *p &X;
double *qg oF

0 (or NULL) is a special pointer value used to indicate that the pointer points
at no object

17

Dereferencing a pointer

To read or write the value of the object pointed to by the pointer, we need to
dereference the pointer

double x = 10.4;
double *p = &X;
double *g = p;

2f\n", x); // prints 23.50
printf("%.2f\n", *p); // prints 23.50
2f\n", *q); // prints 23.50

18

Dereferencing a pointer

To read or write the value of the object pointed to by the pointer, we need to
dereference the pointer

double x = 10.4;
double *p = &X;
double *g = p;

2f\n", x); // prints 23.50
printf("%.2f\n", *p); // prints 23.50
2f\n", *q); // prints 23.50

18

What 1s printed by

int x = 5;

void foo(int *p) {
P = &X;

}

int main(void) {
int z = 3;
int *p = &z;
foo(p);
*p = 07
printf("%d\n", 2z);

}

A. O

B. 3

D. Undefined behavior

E.

Implementation-defined behavior

