
CS 241: Systems Programming

Lecture 8. Introduction to C
Spring 2020

Prof. Stephen Checkoway

1

Hello, World!

2

#include <stdio.h>

int main(void) {

 printf("Hello world!\n");

 return 0;

}

Functions

3

/* Function declaration.

 * - No return value.

 * - Has three parameters, parameter names are optional.

 * - Ends with a semicolon.

 */

void foo(int x, float y, char z);

/* Function definition.

 * - Must match declaration.

 * - Parameter names are not optional.

 * - Body of function wrapped in { }.

 */

void foo(int x, float y, char z) {

 /* ... */

}

Main function

4

// The main function is where execution begins.

// - Returns an int, 0 is success, 1-127 are failure.

// - Takes 0, 2, or implementation-defined number of parameters.

// - argc is the number of command line parameters.

// - argv points to an array of command line parameters.

int main(void) { /* ... */ }

int main(int argc, char **argv) { /* ... */ } // Use this one.

int main(int argc, char **argv, char **envp) { /* ... */ }

Jobs of a Compiler

Inputs

‣ C program file and options

‣ Libraries

Compilation phases

‣ Preprocessing

‣ Compilation

‣ Linking

Outputs

‣ Executable

‣ Warnings and errors

5

Compilation

Java Model C Model

Compilation

Java Model C Model

*.java

Compilation

Java Model C Model

*.java

ja
v
a
c

Compilation

Java Model C Model

*.java

*.class

ja
v
a
c

Compilation

Java Model C Model

*.java

*.class

ja
v
a
c

Compilation

Java Model C Model

*.java

*.class

Run with JVM

ja
v
a
c

Compilation

Java Model C Model

*.java

*.class

Run with JVM

ja
v
a
c

*.c

Compilation

Java Model C Model

*.java

*.class

Run with JVM

ja
v
a
c

*.c

C
P
P

Compilation

Java Model C Model

*.java

*.class

Run with JVM

ja
v
a
c

*.c

C
P
P

c
o
m

p
ile

r

Compilation

Java Model C Model

*.java

*.class

Run with JVM

ja
v
a
c

*.c

*.o

C
P
P

c
o
m

p
ile

r

Compilation

Java Model C Model

*.java

*.class

Run with JVM

ja
v
a
c

*.c

*.o

C
P
P

lin
k
e
r

c
o
m

p
ile

r

Compilation

Java Model C Model

*.java

*.class

Run with JVM

ja
v
a
c

*.c

*.o

executable

C
P
P

lin
k
e
r

c
o
m

p
ile

r

Types of files

Source files (.c extension)

‣ Include header files; lets the source file use functions declared in header

‣ Define functions and global variables

‣ Compiled to object files

Header files (.h extension)

‣ Declare (but typically not define) functions and global variables

‣ Standard library's functions are declared in system header files

‣ Functions used by multiple source files are declared in some header file

Object files (.o extension)

‣ Linked together into the executable by the linker

7

C Preprocessor Directives

8

C Preprocessor Directives

#include — literal inclusion of a file

‣ #include <foo.h>

‣ #include "foo.h"

‣ No (meaningful) differences between <foo.h> and "foo.h"

8

C Preprocessor Directives

#include — literal inclusion of a file

‣ #include <foo.h>

‣ #include "foo.h"

‣ No (meaningful) differences between <foo.h> and "foo.h"

#define foo bar — literal replacement of “foo” with “bar”

‣ Useful for symbolic constants (and other things)

‣ Use UPPERCASE for constants

• Usually these are at the top of the file

• #define NUM_WIDGETS 20

8

In C, a function must be declared (or defined) before the point in the source

file it is called. (I.e., before calling a int fun(double x) function, fun

must be declared or defined.)

How can fun be called from two source files, foo.c and bar.c?

A. Declare fun at the top of both foo.c and bar.c

B. Define fun at the top of both foo.c and bar.c

C. Declare fun in a header file and #include that file in foo.c and bar.c

D. Define fun in a header file and #include that file in foo.c and bar.c

E. None of the above

9

Consider the two files header_file.h

and source_file.c shown to the right.

What is the value of x after the first

line of main?

 

// In header_file.h

#define BAR 10

#define FOO BAR+1

// In source_file.c

#include "header_file.h"

int main(void) {

 int x = FOO * 2;

 /* ... */

}

A. 10

B. 12

C. 20

D. 22

E. It's an error

10

Command line parameters

11

 1 // stdio.h contains printf's declaration.

 2 #include <stdio.h>

 3

 4 // argc is like Bash's $# (but off-by-one)

 5 // argv[0] is like $0

 6 // argv[1], ..., argv[argc-1] is like $1, $2 ...

 7 int main(int argc, char **argv) {

 8 for (int idx = 0; idx < argc; ++idx) {

 9 // %d means print an integer,

10 // %s means print a string

11 printf("%d: %s\n", idx, argv[idx]);

12 }

13 return 0;

14 }

Command line parameters

12

$./arguments 'First argument' second third etc.

0: ./arguments

1: First argument

2: second

3: third

4: etc.

Basic types

13

Integer type sizes

14

Integer type sizes

sizeof(type) is the number of bytes a variable of type has

14

Integer type sizes

sizeof(type) is the number of bytes a variable of type has

1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int)  

 ≤ sizeof(long) ≤ sizeof(long long)

14

Integer type sizes

sizeof(type) is the number of bytes a variable of type has

1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int)  

 ≤ sizeof(long) ≤ sizeof(long long)

sizeof(type) = sizeof(signed type) = sizeof(unsigned type)

14

Integer type sizes

sizeof(type) is the number of bytes a variable of type has

1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int)  

 ≤ sizeof(long) ≤ sizeof(long long)

sizeof(type) = sizeof(signed type) = sizeof(unsigned type)

sizeof(bool) is implementation defined

14

Integer type sizes

sizeof(type) is the number of bytes a variable of type has

1 = sizeof(char) ≤ sizeof(short) ≤ sizeof(int)  

 ≤ sizeof(long) ≤ sizeof(long long)

sizeof(type) = sizeof(signed type) = sizeof(unsigned type)

sizeof(bool) is implementation defined

A byte isn't always 8 bits! (But it is on most systems.)

14

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-08.html

Grab a laptop and a partner and try to get as much of that done as you can!

15

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-08.html

