
CS 241: Systems Programming

Lecture 7. Shell Scripting 2
Fall 2019

Prof. Stephen Checkoway

1

Script positional parameters

$./script arg1 ... argn # or bash script arg1 ... argn

Special variables

‣ $# — Number of arguments

‣ $0 — Name used to call the shell script (./script or script)

‣ $1, $2, …, $9 — First nine arguments

‣ ${n} — nth argument (braces needed for n > 9)

‣ "$@" — all arguments; expands to each argument quoted

‣ "$*" — all arguments; expands to a single quoted string

2

Two special builtin commands

set --

‣ Can set positional parameters (and $#)  

set -- arg1 arg2 … argn

shift  
shift n

‣ Discard first n parameters and rename the remaining starting at $1

‣ If n is omitted, it's the same as shift 1

‣ Updates $#

3

Iterate over parameters

4

while [[$# -gt 0]]; do
 arg="$1"
 # whatever you want to do with ${arg}
 shift
done

Functions

5

#!/bin/bash

num_args() {

 echo "foo called with $# arguments"
 if [[$# -gt 0]]; then
 echo " foo's first argument: $1"
 fi
}

echo "Script $0 invoked with $# arguments"
if [[$# -gt 0]]; then
 echo " $0's first argument: $1"
fi

num_args 'extra' "$@" 'args'

local creates a local variable.

What does this script print out?

A. A

B. B

C. C

D. The empty string

E. Nothing, it's a syntax

error

6

#!/bin/bash

foo() {

 x="$1"
}

bar() {

 local x="$1"
}

x=A
foo B
bar C
echo "${x}"

local creates a local variable.

What does this script print out?

A. A

B. B

C. C

D. D

E. Nothing, it's a syntax

error

7

#!/bin/bash

foo() {

 x="$1"
}

bar() {

 local x="$1"
 foo "$2"
}

x=A
foo B
bar C D
echo "${x}"

Lists — sequence of commands

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

‣ Exit value is exit value of last command in the pipeline

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

‣ Exit value is exit value of last command in the pipeline

‣ Exit value can be negated by ! cmd1 | … | cmdn

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

‣ Exit value is exit value of last command in the pipeline

‣ Exit value can be negated by ! cmd1 | … | cmdn

Lists

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

‣ Exit value is exit value of last command in the pipeline

‣ Exit value can be negated by ! cmd1 | … | cmdn

Lists

‣ pipeline1 ; pipeline2 ; … ; pipelinen  
can replace ; with newline

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

‣ Exit value is exit value of last command in the pipeline

‣ Exit value can be negated by ! cmd1 | … | cmdn

Lists

‣ pipeline1 ; pipeline2 ; … ; pipelinen  
can replace ; with newline

‣ pipeline1 && pipeline2  

pipeline2 runs if and only if pipeline1 returns 0

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

‣ Exit value is exit value of last command in the pipeline

‣ Exit value can be negated by ! cmd1 | … | cmdn

Lists

‣ pipeline1 ; pipeline2 ; … ; pipelinen  
can replace ; with newline

‣ pipeline1 && pipeline2  

pipeline2 runs if and only if pipeline1 returns 0

‣ pipeline1 || pipeline2  

pipeline2 runs if and only if pipeline1 doesn't return 0

8

Lists — sequence of commands

Pipeline: cmd1 | cmd2 | … | cmdn

‣ Exit value is exit value of last command in the pipeline

‣ Exit value can be negated by ! cmd1 | … | cmdn

Lists

‣ pipeline1 ; pipeline2 ; … ; pipelinen  
can replace ; with newline

‣ pipeline1 && pipeline2  

pipeline2 runs if and only if pipeline1 returns 0

‣ pipeline1 || pipeline2  

pipeline2 runs if and only if pipeline1 doesn't return 0

‣ pipeline &  
runs pipeline in the background

8

When writing a script, we often want to change directories with cd. If the

directory doesn't exist, the script should exit with an error.

Which construct should we use?

A. cd "${dir}" && exit 0

B. cd "${dir}" || exit 0

C. cd "${dir}" && exit 1

D. cd "${dir}" || exit 1

E. cd "${dir}" && exit 2

9

Arrays

Assign values at numeric indices

‣ arr[0]=foo

‣ arr[1]=bar

Assign multiple values at once

‣ arr=(foo bar)

‣ txt_files=(*.txt) # pathname expansion/globbing

Append (multiple values) to an array

‣ arr+=(qux asdf)

10

Arrays

Access an element

‣ ${arr[0]}

‣ ${arr[1]}

‣ n=42  

${arr[n]}

Access all elements

‣ "${arr[@]}" # expands to each element quoted by itself

‣ "${arr[*]}" # expands to one quoted word containing all elements

Array length

‣ ${#arr[@]}

11

If arr is the two element array 

arr=('foo bar' baz)  

how should we print each element of arr?

12

A. for elem in ${arr}; do
 echo "${elem}"
 done

B. for elem in "${arr}"; do
 echo "${elem}"
 done

C. for elem in "${arr[*]}"; do
 echo "${elem}"
 done

D. for elem in "${arr[@]}"; do
 echo "${elem}"
 done

E. for ((n=0 ; n < ${#arr[@]}; n+=1)); do
 echo "$arr[n]"
 done

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-07.html

Grab a laptop and a partner and try to get as much of that done as you can!

13

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-07.html

