CS 241: Systems Programming
Lecture 5. Version Control/Git

Spring 2020
Prof. Stephen Checkoway

Version control system (VCS)

Version control system (VCS)

A way to track changes to your files
> What you changed
> Why you changed it

Version control system (VCS)

A way to track changes to your files
> What you changed
> Why you changed it

A way to keep “backups” of older versions

Version control system (VCS)

A way to track changes to your files
> What you changed
> Why you changed it

A way to keep “backups” of older versions

A way to keep track of different versions (branches) of a project
> Development
> Release

Version control system (VCS)

A way to track changes to your files
> What you changed
> Why you changed it

A way to keep “backups” of older versions

A way to keep track of different versions (branches) of a project
> Development
> Release

A way to organize and collaborate on a project

VCS history (abridged)
—> —> {Git, Mercurial, ...}

1972 — Source Code Control System (SCCS)
1985 — Revision Control System (RCS)
> All users on the same system, each with their own checkout of the files
1986 — Concurrent Versioning System (CVS)
> Client/server model
2000 — Subversion (SVN)
> Essentially a better CVS
2005 — Git and Mercurial
> Distributed model: each user has their own copy of the whole repository

VCS history (abridged)
—> CVS — SVN — {Git, Mercurial, ...}

SCCS/RCS
> Master repository with all history stored somewhere, e.qg.,

/source/program

> Individual users checkout the current version somewhere else, e.g.,
~/program

» Modifications can be checked in to the master repo

> Other users’ modifications can be checked out again

> The history of files and their differences can be shown

VCS history (abridged)
SCCS — RCS —>—> {Git, Mercurial, ...}

CVS/SVN

> Master repo stored on some server, e.g.,
vcs.oberlin.edu:/vcs/program

» Users on many different machines can checkout copies, e.q.,
clyde.cs.oberlin.edu:~/program

> Changes to files are committed to the server which maintains the
authoritative copy of the repository history

> Local copies can be updated with other users' changes from the server

> Multiple branches, but each with a linear commit history (r1, r2, r3, ...)

VCS history (abridged)

SCCS — RCS — CVS — SVN — {Git, Mercuirial, ...}

Git/Mercurial
> Decentralized
 Each user has a full copy of the repo
 No authoritative version
Users can push changes to other users or pull changes from others
Multiple, lightweight branches
History is not linear, it's a DAG (we'll see what this means shortly)
Decentralization is hard to deal with: use Github (or similar)

v v v v

Git

A distributed version control system
> Everyone can act as a “server”
> Everyone mirrors the entire repository

Git

A distributed version control system
> Everyone can act as a “server”
> Everyone mirrors the entire repository

Many local operations
» Quick to add files, commit, create new branches, etc.
> Can have local changes w/o pushing to others

Git

A distributed version control system
> Everyone can act as a “server”
> Everyone mirrors the entire repository

Many local operations
» Quick to add files, commit, create new branches, etc.
> Can have local changes w/o pushing to others

Collaborate with other developers
> “Push” and “pull” code from hosted repositories such as Github

Initial setup

S git config --global user.name 'Stephen Checkoway'

S git config --global user.email \
'stephen.checkoway@oberlin.edu’

S git config --global core.editor vim

Global config values are stored in ~/ .gitconfig

Can also have local config settings in ${repo}/.git/config

Creating a repository

S mkdir project

S cd project

$ git init

Creates a .git folderin project

No files are currently being tracked or managed

NO remote server

Cloning a (remote) repository

S git clone https://github.com/klange/nyancat.git

Creates a local copy of the repo
iIncluding the whole history

Associated with a remote server

ﬁ O klange/nyancat: Nyancat in yo. X +

)= C 19

® © & GitHub, Inc. (US) | https://github.com

Pull requests

Issues Marketplace Explore

klange / nyancat ®@watch~ 33 WStar 990

<> Code Issues 3 Pull requests 3 Projects 0 Security Insights

Nyancat in your terminal, rendered through ANSI escape sequences. This is the source for the Debian package "nyancat’'.
http://nyancat.dakko.us/

nyan-cat poptart-cat terminal telnet

{® 159 commits I 1 branch 14 releases

Branch: master v New pull request

Create new file Upload files Find File

*3 tyler-cromwell and klange Converted spaces to tabs, and changed to setting a delay instead of a...

Clone with HTTPS @

. . Use Git or checkout with SVN using the
W src Converted spaces to tabs, and changed to setting a delay instead of ¢ bl Bk

v N o EBEPe g e 2 =

22 18 contributors

Clone or download ~

Y Fork 100

Use SSH

web URL.

M systemd Add systemd unit files

=] .gitignore Telnet server
Open in Desktop Download ZIP
CHANGELOG Fix telnet size negotiation A D n
| Makefila w1iR? lact voar

‘ https://github.com/klange/nyancat.git ’ B

10

Cloning a (remote) repository

eeeee @clyde:~$ |}

Cloning a (remote) repository

eeeee @clyde:~$ |}

Warning: Git is ridiculous

& C () & https://checkoway.net/musings/qit/ e @ & voIunN O B d. H ® 2 =

Git is ridiculous

Apr 3, 2019 * Stephen Checkoway
Git is ridiculous.

|.ast updatvd Apr 3, 2019.

12

Working dir vs staging vs .git

After git init or git clone, you have Local Operations

a working directory on the file system e e

> Holds one version of the files in the
repo

Inside it (usually) is a . git directory with ool b

> The whole history of the repo (all
commits)

> config options, branches, etc.

Conceptional staging area
> Holds files to be committed

13

Adding and committing

Adding and committing

S vim README # Create a readme describing the project

Working directory Staging area Git directory

14

Adding and committing

S vim README # Create a readme describing the project

Working directory Staging area Git directory

README

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area

Working directory Staging area Git directory

README

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area

Working directory Staging area Git directory
README README

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area
S vim hello.py # Create some code

Working directory Staging area Git directory
README README

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area
S vim hello.py # Create some code

Working directory Staging area Git directory
README README

hello.py

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area
S vim hello.py # Create some code

S git add hello.py # Add the hello.py to the staging area

Working directory Staging area Git directory
README README

hello.py

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area
S vim hello.py # Create some code

S git add hello.py # Add the hello.py to the staging area

Working directory Staging area Git directory

README README
hello.py hello.py

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area

S vim hello.py # Create some code

S git add hello.py # Add the hello.py to the staging area

S git commit # Commit the files to the repo

Working directory Staging area Git directory

README README
hello.py hello.py

14

Adding and committing

S vim README # Create a readme describing the project
S git add README # Add README to the staging area

S vim hello.py # Create some code

S git add hello.py # Add the hello.py to the staging area

S git commit # Commit the files to the repo

Working directory Staging area Git directory

82F1A6

README

hello.py

14

Commits

Each commit is (in essence) a snapshot of the repository

Commits are named by a hash of their contents, e.g.,
c37cel054c766b79a3577aba898b296d3557c3d24,

often just the first 7 digits: c37ce05

Each commit links to its parent commit(s)

15

Adding and committing

Working directory Staging area Git directory

82F1A6

README

hello.py

10

Adding and committing

S vim hello.py # Modify the code

Working directory Staging area Git directory

82F1A6

README

hello.py

10

Adding and committing

S vim hello.py # Modify the code
S vim Changel.og # Write a change log with changes

Working directory Staging area Git directory

82F1A6

README

hello.py

10

Adding and committing

S vim hello.py # Modify the code
S vim Changel.og # Write a change log with changes

Working directory Staging area Git directory

82F1A6

README
hello.py

Changelog

10

Adding and committing

S vim hello.py # Modify the code
S vim Changel.og # Write a change log with changes
S git add hello.py # Add the hello.py to the staging area

Working directory Staging area Git directory

82F1A6

README
hello.py

Changelog

10

Adding and committing

S vim hello.py # Modify the code
S vim Changel.og # Write a change log with changes
S git add hello.py # Add the hello.py to the staging area

Working directory Staging area Git directory

README hello.py 82F1A6

hello.py

Changelog

10

Adding and committing

S vim hello.py # Modify the code

S vim Changel.og # Write a change log with changes

S git add hello.py # Add the hello.py to the staging area
S git add ChangelLog # Add Changelog

Working directory Staging area Git directory

README hello.py 82F1A6

hello.py

Changelog

10

Adding and committing

S vim hello.py # Modify the code

S vim Changel.og # Write a change log with changes

S git add hello.py # Add the hello.py to the staging area
S git add ChangelLog # Add Changelog

Working directory Staging area Git directory

README hello.py 82F1A6

hello.py ChangelLog

Changelog

10

Adding and committing

S vim hello.py # Modify the code

S vim ChangeLog # Write a change log with changes

S git add hello.py # Add the hello.py to the staging area
S git add ChangelLog # Add Changelog

S git commit # Commit the files to the repo

Working directory Staging area Git directory

82F1A6

README hello.py
hello.py ChangelLog

Changelog

10

Adding and committing

S vim hello.py # Modify the code

S vim ChangeLog # Write a change log with changes

S git add hello.py # Add the hello.py to the staging area
S git add ChangelLog # Add Changelog

S git commit # Commit the files to the repo

Working directory Staging area Git directory

82F1A6

README
hello.py

Changelog

10

You've just cloned a repository from github, cd'd into the repo's directory,
and created a new file.

S git clone git@github.com:username/example-project.git
S cd example-project

S vim foo

What command(s) should you run to commit this new file to the repo?

A. S git add foo D. $ git add foo
S git push
B. $ git commit foo
E.$ git add --commit foo
add foo
commit

After adding and committing initially, you've been working on foo for a while
and want to commit again.

What command(s) should you run to commit your changes repo?

A. S git add foo D. $ git commit foo
S git push
B. $ git commit foo

E.$ git add --commit foo
C. $ git add foo

S git commit

Commit Message

When doing a commit, your editor will be opened so you can enter a commit
message

> Short summary line

> Blank line

> Longer description

Try to provide enough detall that you can read the message to understand
what changes were made (and why)
> Might be easy to remember now, but in 6 months?

19

Naming commits

Individual commits can have human-readable names
> HEAD Is the currently checked out commit

» master IS most recent commit on the default branch (which is itself
named master)
> tags and branches give names to commits

20

Example

OO0

el37e%b.. 76d89az2..
first commit

master

O-0-0

el37e%b..
first commit

76d89%az2..

92d72e2..

master

After two commits, HEAD and master point to the second commit

After a third commit, HEAD and master point to the third commit

21

HEAD != master

O+-0+-0

S5ec343e.. cc2a8la.. 60al4e5..

0-0-0-0-@

el37e%.. 76d89%az2.. 92d72e2. . e5939c¢8.. 7704feb. .
first commit

fix-bug

We can create a new branch fix-bug and commit to that branch

We can also keep committing to master

HEAD points to the branch we have checked out

22

Pushing to the remote server

S git push
Sends to the remote server all of your committed data (it doesn't already have)

Remote servers are called remotes
> When cloning, the remote is named origin by default
> Remotes have their own branches origin/master IS origin's master
branch
> |t's possible to have multiple remotes (but we probably won't in this class)

23

Local repository Origin

OO

el37e%b. . 809£413..
first commit

Example

master

24

Local repository Origin

Q-0

e137e9b 809£413..

Example

S git clone ..

master

24

Example

S git clone

Local repository

OO

el37e%b. . 809f£413..
first commit

~ master

‘HEAD\

| origin/master |

24

Origin

()

el37e%b. .
first commit

O

809£413..

master

Local repository Origin

rrrrrrrrr el37e%b.. 809£413..
. ' | first commit
[HEAD ‘

| origin/master |

S git add ..
$ git commit
S git add ..
S git commit

24

Example

S git clone

S git add
S git commit
S git add
S git commit

Local repository

OO

el37e%b. . 809f£413..
first commit

' master |

IHEAD\

() —()-

el37e%.. B09f£413.. flac2eb. . 0£42731..
first commit

origin/master master |

24

Origin

()~

el37e%.. 809£413..
first commit

. master |

OO

el37e%b.. 809£413..
first commit

' master |

Example

S

U 0 O\ N}

git

git
git
git
git

git

clone

add
commit
add
commit

push

Local repository

OO

el37e%b. . 809f£413..
first commit

. master |

| HEAD \
‘ origin/master \

O+-0+—0-

el37e%.. B09f£413.. flac2eb. . 0£42731..
first commit

‘ origin/master \ master |

24

Origin
O-
el37e%.. 809£413..

first commit

. master |

OO

el37e%b.. 809£413..
first commit

' master |

Local repository Origin
Example O—@ 0-

first commit el37e%b.. 809f£413..
first commit

S git clone .. _ master | | master |

‘ HEAD \
-

it add ..
it comit ~Q—Q+-Q+—@ O—0O

el37e9b.. 809£413.. f3ac2eb. . 0£42731.. el37e%.. 809f£413..

git add .. first commit i
nosr | |

glit commit

$ git push O O O O O O O‘O

el37e%b. 809£413. f3acZeb. 0£42731.
first Vommlt

U 0 O\ N}

el37e9%. 809f413. fiac2eb. 0£42731..
first anmlt

master master

‘ origin/master \ |_|HEAD
|HEAD\

24

Pulling from the remote server

S git pull

Pulls changes from the remote server to the local repo and merges with the
local changes

S git pull --rebase

Pulls changes from the remote server to the local repo and rebases local
commits on top of remote commits

25

Pulling with merging

Commits from the remote will be added to the local repository
If there are local commits, git tries to merge them by creating a new commit

A---B---C master on origiln

/
D---E-=-F---G master

A

origin/master in your repository

A---B---C origin/master

/ \
D---E---F---G---H master

20

Pulling with rebasing

Commits from the remote will be added to the local repository
If there are local commits, git replays them on top of the new commits

A---B---C master on origiln

/
D---E-=-F---G master

A

origin/master in your repository

origin/master
\%
D---E---A-—--B---C---F'—--G' master

27

Reminder: Git is ridiculous

Warning: Git is ridiculous

“— C D & checkoway.net

Git is ridiculous

28

S git
S git
S git
S git
S git
S git

S git

Gitting help

--help

init --help
clone --help
add --help
commit --help
push —--help

pull --help

29

Basic Workflow

Basic Workflow

Create the repository by clicking on the link in the homework

30

Basic Workflow

Create the repository by clicking on the link in the homework

Clone the repository into clyde using $ git clone <url)

30

Basic Workflow

Create the repository by clicking on the link in the homework

Clone the repository into clyde using $ git clone <url)

Add files to be committed with $ git add (filename)

30

Basic Workflow

Create the repository by clicking on the link in the homework

Clone the repository into clyde using $ git clone <url)
Add files to be committed with $ git add (filename)

Create a commit (snapshot) of added files using $ git commit

30

Basic Workflow

Create the repository by clicking on the link in the homework

Clone the repository into clyde using $ git clone <url)

Add files to be committed with $ git add (filename)

Create a commit (snapshot) of added files using $ git commit

Push files to the server using $ git push

30

Basic Workflow

Create the repository by clicking on the link in the homework

Clone the repository into clyde using $ git clone <url)
Add files to be committed with $ git add (filename)

Create a commit (snapshot) of added files using $ git commit
Push files to the server using $ git push

See the current state of the files using $ git status

30

Commit often

Commits are cheap, commit often

Commits can be reverted by git revert
» Makes a new commit that undoes the old commit
> $§ git revert (commit hash)

Commits that haven't been pushed can be undone completely by
git reset
> $ git reset --hard <(commit hash)

Demo at https://qgit-school.qgithub.io/visualizing-qgit/#free-remote

31

https://git-school.github.io/visualizing-git/#free-remote

In-class exercise

https:.//checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-05.html

Grab a laptop and a partner and try to get as much of that done as you can!

32

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-05.html

