CS 241: Systems Programming
_ecture 4. Environment and
expansion

Spring 2020
Prof. Stephen Checkoway

Announcement

Homework 1 is on the course web page
> |t's due on the 23th
> Work in groups of 2 (or by yourself if you really want)
> |t involves shell scripting which we'll start talking about on Friday and
using Git which we'll talk about on Wednesday

Program behavior

Most programs can have different behaviors when run multiple times. E.qg.,
the 1s program can list the contents of different directories and can display

the output in multiple formats

[worksec:~/teaching/241/S20] steve$ ls
check clicker.py
[worksec:~/teaching/241/S20] steve$ 1ls rubrics

hwl-rubric.md hw2-rubric.md hw3-rubric.md hwéd4-rubric.md

examples

hwS5-rubric.md hwé-rubric.md
[worksec:~/teaching/241/S20] steve$ ls -1 rubrics

total 32

—YW—Y——Y——
—YW—Y——Y——
—YW—Y——Y——
—YrW—Y——Y——
—YW—-Y——Y——
—YW—-Y——-Y—-—

e

steve
steve
steve
steve
steve
steve

staff
staff
staff
staff
staff
staff

3929
6147
5159
4034
424
782

Feb
Feb
Feb
Feb
Feb

notes.md

old-notes.md

09:
09:
09:
09:
09:
09:

38
38
38
38
38
38

hwl-rubric
hw2-rubric
hw3-rubric
hwd-rubric
hwS5-rubric
hwé-rubric

rubrics

.Ind
.Ind
.Ind
.Ind
.Ind
.Ind

slides

What controls program behavior?

What controls program behavior?

Input arguments (e.q., file/directory paths, a URLs or command names)

Contents of the input files

Command line options

Configuration/preference files (or OS-specific configuration/preference
databases)

User input (for interactive programs)

Environment variables!

Bash simple command revisited

Recall we said a simple command has the form:
(command) {) (arguments)

The truth iIs more complicated
> (variable assignments) {words and redirections) {control operator)
> Variables and their assigned values are available to the command
> The first word is the command, the rest are arguments™®
» FOO=blah BAR=okay cmd aaa >out bbb 2>err ccc <in ;
> FOO=blah BAR=okay cmd aaa bbb ccc <in >out 2>err
> Real example: $ TFsS= read var

* Bash doesn't distinguish between options and arguments, that's up to each command

5

Environment variables

Another method for passing data to a program

Essentially a key/value store (i.e., a hash map)
» § FOO=blah BAR=okay cmd aaa bbb ccc
> cmd has access to the 70O and BAR environment variables plus args

Environment variables are inherited from the parent
> Every program started from the shell has access to a copy of the shell's
environment

Example: color output from Is

@) O steve@worksec: ~/teaching/241/S20 384

[:~/teaching/241/520] steve$ ls rubrics

hwl-rubric.md hwZ-rubric.md hw3-rubric.md hwé4-rubric.md hwS5-rubric.md hwoe-rubric.
[. ~/teaching/241/520] steve$ LS_COLORS="*.md=01;35"' 1s rubrics

hwl-rubric.md hwZ-rubric.md hw3-rubric.md hw4-rubric.md hwS5-rubric.md hwo-rubric.
[:~/teaching/241/52@] steve$ LS_COLORS='*.md=01;35;44"' 1s rubrics

hwl-rubric.md hwZ-rubric.md hw3-rubric.md hwé4-rubric.md hwS-rubric.md hwo-rubric.
[.~/teaching/241/520] steve$ LS_COLORS='*.md=36;42"' 1s rubrics

hwl-rubric.md hw2-rubric.md hw3-rubric.md hw4-rubric.md hw5-rubric.md hw6-rubric.
[:~/teaching/241/520] steve$ LS_COLORS="*.md=31;41"' 1s rubrics

L .~/teaching/241/520] steve$ §

Bash variables

Setting and using variables in bash
» § place=Earth
S echo "Hello ${place}."
Hello Earth.

By default, variables set in bash aren't inherited by children
» S bash # Start a new shell
$ echo "Hello S${place}."
Hello . # S{place} expanded to the empty string

Exporting variables

We can export a variable which causes it to appear in the environment of
children

S place=World

S export place

S bash # Starting a new shell
S echo "Hello ${place}."

Hello World.

Equivalently, S export place=World

Summarizing

Summarizing

S FOO=bar cmdl
S cmd?2
» FOO available to emd1 but not cmd?2

10

Summarizing

S FOO=bar cmdl
S cmd?2
» FOO available to emd1 but not cmd?2

S FOO=bar
S cmdl
S cmd?2
> FOO not available to either cmd1 or cmd2

10

Summarizing

S FOO=bar cmdl
S cmd?2
» FOO available to emd1 but not cmd?2

S FOO=bar
cmdl
S cmd?2
> FOO not available to either cmd1 or cmd?2

U

U

export FOO=bar

cmdl

S cmd2

» FOO avalilable to both cmd1 and cmd?2

10

U

If bash Is started via

S W=foo bash
(so W is in bash's environment) and then following lines are executed,

S X=bar

S export Y=qux

S Z=X command

which environment variables are available to command?

A. W, X, Y, and Z D. Yand Z

B. W, Y, and Z E. Z

C. X, Y,and Z

What is printed when | run this?

S FOO=before

S FOO=after echo "S{FOO}"
A. before

B. after

C. beforeafter

D. Just a newline

E. Nothing, it's a syntax error

Useful environment variables

EDITOR — Used when some commands need to launch an editor (e.g., git)

HOME — Your home directory

LANG — The language programs should use (this is complicated!)
PAGER — A program like less that's used to display pages of text
PATH — Colon-separated list of directories to search for commands
PS1 — The shell's prompt

PWD — The current working directory

SHELL — The shell you're using

TERM — The terminal type, used to control things like color support
UID — The real user ID number

USER — User name

13

Adding directories to PATH

If you install software in $ {HOME} /local/bin, you can modify your PATH to
access It

S export PATH="${HOME}/local/bin:${PATH}"
This adds $ {HOME }/local/bin to the front of the PATH so it is searched first

S export PATH="S$S{PATH}:${HOME}/local/bin"
This adds ${HOME}/local/bin to the end of the PATH so it is searched last

14

Bash expansion

Bash first splits lines into words by (unquoted) space or tab characters
S echo 'quoted string' unquoted string
> Word 1: echo
» Word 2: 'quoted string'
> Word 3: unguoted
» Word 4: string

Most words then undergo expansion
> The values in variable assignment var=value (but not the names)
> The command and arguments
> The right side of redirections, e.g., 2>path

15

Bash expansion

Order of expansion

> Brace expansion

> In left-to-right order, but at the same time
e Tilde expansion
e \ariable expansion
e Arithmetic expansion
« Command expansion
 Process substitution

> Word splitting (yes, this happens after the shell split the input into words!)
» Pathname expansion

And then each of the results undergoes quote removal

10

In-class exercise

https:.//checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-04.html

Grab a laptop and a partner and try to get as much of that done as you can!

If you get stuck, look at the following slides (remember, all slides are on the
course web page linked from the readings page).

17

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-04.html

Brace expansion

Unqguoted braces { } expand to multiple words
» {foo,bar,baz}.txt @ foo.txt bar.txt baz.txt
» foo{a,b,,c}bar — fooabar foobbar foobar foocbar
> {a,b} = ‘{a,b}
- "{a,b}" = "{a,b}"
» {1..5} & 1 2 3 4 5
> {X..2} 2 XV Z
> {1,2}{xX..2} 2 1x 1ly 1z 2x 2y 2z
> {a,b{c,d}} @ a bc bd

18

Tilde expansion

Words starting with unquoted tildes expand to home directories
» ~ = /usr/users/noquota/faculty/steve
» ~steve — /usr/users/noquota/faculty/steve
» ~aeck — /usr/users/noquota/faculty/aeck
> \~steve — \~steve
» '~steve' — '~steve’

19

Parameter/variable expansion

We can assign variables via var=value (e.g., class='CS 241"') the shell
defines others like HOME and PWD

Words containing ${var} or Svar are expanded to their value, even in
double quoted strings

> S{HOME} — /usr/users/noquota/faculty/steve

» xS{PWD}y — x/tmpy # the current working directory

» xSPWDy — x # no PWDy variable so it expands to the empty string
> '${class}’' — 'S{class}’

> \${class} — \S${class}

> "$S{class}” — "CS 241"

20

Command substitution

Replaces $ (command) with its output (with the trailing newline stripped)
> "Hello $(echo "S${class}" | cut)" — "Hello 241"

These can be nested

You can also use "command Instead, but don't do that, use S (...)

21

Arithmetic expansion

S((arithmetic expression)) expands to the result, assume x=10

> S((3+x*2 % 6)) = 5

> \S((3+x*2 % 6)) — # syntax error

> 'S((3+x*2 % 6)) ™ 'S((3+x*2 % 6))’
> "$((3+x*2 % 6))" = "5"

22

Process substitution

Read the man page for bash if you want, we may come back to it

Word splitting

| steve@clyde:~$% x='foo bar

A misfeature in bash! l steve@clyde:~% echo ${x}
foo bar

The results of
parameter/variable expansion ${...},
command substitution $(...), and
arithmetic expansion $((...))

not in double quotes is split into words by splitting on (by default) space,

tab, and newline

steve@clyde:~%$ echo "${x}"
' foo bar

You never want word splitting! If you're using a $, put it in double quotes!

24

Pathname expansion

We saw this previously!

Pathname expansion/globbing

Bash performs pathname expansion via pattern matching (a.k.a. globbing)
on each unquoted word containing a wild card

Wild cards: *, 2, [
» * matches zero or more characters
» 2 matches any one character
> [..] matches any single character between the brackets, e.qg., [abc]
» [!..] or["..] matches any character not between the brackets
» [x-y] matches any character in the range, e.g., [a-£]

20

25

Quote removal

Unquoted ', ", and \ characters are removed in the final step
» '"foo bar' @ foo Dbar (one word)

» "foo bar" — foo bar (one word)

> "${class}” — CS 241 (one word)
» "S{class} 1s"' fun' — CS 241 1is fun (one word)

20

EXpansion summary

Braces form separate words [{a,b,c}] — [a] [b] [C]

Tildes give you home directories ~ = /home/steve

Variables expand to their values "$S{class}" — "CS 241"

Commands expand to their output "$ (1s *.txt | wc)"t > "3
Wildcards expand to matching file names *.txt = a.txt b.txt c.txt
Put literal strings in 'single quotes'

Put strings with variables/commands in "${double} $(gquotes)"

27

If we have set a variable

books="Good books'

and we want to create a directory with that name, which command should
we use?

A. S mkdir "S{books}"”

mkdir "$(books)"”

mkdir ${books}
mkdir $ (books)

mkdir Sbooks

