CS 241: Systems Programming
ecture 3. More Shell

Spring 2020
Prof. Stephen Checkoway

Anatomy of a single command

Anatomy of a single command

(command) ¢) (arguments)

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:
* Long options are (usually) two hyphens and multiple letters:

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:

* Long options are (usually) two hyphens and multiple letters:
 Multiple short options can be combined IS the same as

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:

* Long options are (usually) two hyphens and multiple letters:
 Multiple short options can be combined IS the same as
e Options can take arguments: or

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:

* Long options are (usually) two hyphens and multiple letters:
 Multiple short options can be combined IS the same as
e Options can take arguments: or

» (arguments) are the things the command acts on

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:

* Long options are (usually) two hyphens and multiple letters:
 Multiple short options can be combined IS the same as
e Options can take arguments: or

» (arguments) are the things the command acts on
o Often file paths or server names or URLs

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:
* Long options are (usually) two hyphens and multiple letters:
 Multiple short options can be combined IS the same as
e Options can take arguments: or
» (arguments) are the things the command acts on
» Often file paths or server names or URLs
 When no arguments are given (or a single -), many commands read stdin

Anatomy of a single command

(command) ¢) (arguments)
> (command) IS the name of a command or a path to a program
>) are directives to the command to control its behavior

* Short options are a hyphen and a letter:
* Long options are (usually) two hyphens and multiple letters:
 Multiple short options can be combined IS the same as
e Options can take arguments: or
» (arguments) are the things the command acts on
» Often file paths or server names or URLs
 When no arguments are given (or a single -), many commands read stdin

Example: tar dir/filel file?2

Example meaning

v tar(l) =zcf archive.tar.gz =--verbose dir/filel file?2

® | The GNU version of the tar archiving utility

-2, --gzip, --gunzip --ungzip

-C, --Create
create a new archive

-f, --file ARCHIVE
use archive file or device ARCHIVE

-v, --verbose
verbosely list files processed

tar [-] A --catenate --concatenate | ¢ --create | d --diff --compare | --delete | r --append | t --list |
--test-label | u --update | x --extract --get [options]| [pathname ...]

Click to go to explainshell.com
3

https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2
https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2

Shell commands

Shell commands

Shell builtins
> Functionality built into bash (all listed in the manual)
» E.g.,cd, alias, echo, pwd

Shell commands

Shell builtins
> Functionality built into bash (all listed in the manual)
» E.g.,cd, alias, echo, pwd

Shell functions
> User-defined functions (we'll get to these later)

Shell commands

Shell builtins
> Functionality built into bash (all listed in the manual)

» E.g.,cd, alias, echo, pwd

Shell functions
> User-defined functions (we'll get to these later)

Aliases
> E.g.,,alias 1ls='ls --color=auto’

Shell commands

Shell builtins
> Functionality built into bash (all listed in the manual)

» E.g.,cd, alias, echo, pwd

Shell functions
> User-defined functions (we'll get to these later)

Aliases
> E.g.,,alias 1ls='ls --color=auto’

Programs stored on the file system
» /bin, /usr/bin, /usr/local/bin, /sbin, /usr/sbin

> E.g., ssh, cat, 1s, rm

Pathname expansion/globbing

Bash performs pathname expansion via pattern matching (a.k.a. globbing)
on each unquoted word containing a wild card

Wild cards: *, 2, [
> * matches zero or more characters
> 2?2 matches any one character
> [..] matches any single character between the brackets, e.g., [abc]
> [!..] or ["..] matches any character not between the brackets
> [x-y] matches any character in the range, e.g., [a-£]

Example

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

Example

P
o
P
*
~
>
Q
()]
—
U

Example

S 1ls ex/*.txt

ex/a-1.txt
ex/b-2.txt

ex/a-2.txt
ex/b-3.txt

ex/a-3.txt

ex/b-1.txt

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

Example

S 1ls ex/*.txt
ex/a-1.txt ex/a-2.txt
ex/b-2.txt ex/b-3.txt

S 1ls ex/?-3.*%

ex/a-3.txt

ex/b-1.txt

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

Example

S 1ls ex/*.txt

ex/a-1.txt
ex/b-2.txt

ex/a-2.txt
ex/b-3.txt

S 1ls ex/?-3.*%

ex/a-3.bin

ex/a-3.txt

ex/a-3.txt

ex/b-3.bin

ex/b-1.txt

ex/b-3.txt

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

Example

S 1ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt
ex/b-2.txt ex/b-3.txt

S 1ls ex/?-3.*%
ex/a-3.bin ex/a-3.txt ex/b-3.bin

S 1s ex/["acd]-[0-9].b*in

ex/b-1.txt

ex/b-3.txt

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

Example

S 1ls ex/*.txt

ex/a-1.txt
ex/b-2.txt

ex/a-2.txt
ex/b-3.txt

S 1ls ex/?-3.*%

ex/a-3.bin

ex/a-3.txt

ex/a-3.txt

ex/b-3.bin

S 1s ex/["acd]-[0-9].b*in

ex/b-1.bin

ex/b-2.bin

ex/b-3.bin

ex/b-1.txt

ex/b-3.txt

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

Example

S 1ls ex/*.txt
ex/a-1.txt
ex/b-2.txt

ex/a-2.txt
ex/b-3.txt

S 1ls ex/?-3.*%
ex/a-3.bin

ex/a-3.txt

ex/a-3.txt

ex/b-3.bin

S 1s ex/["acd]-[0-9].b*in
ex/b-1.bin

S

ls

"eX/*"

ex/b-2.bin

ex/b-3.bin

ex/b-1.txt

ex/b-3.txt

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

Example

S 1ls ex/*.txt

ex/a-1l.txt ex/a-2.txt ex/a-3.txt

ex/b-2.txt ex/b-3.txt

S 1ls ex/?-3.*%

ex/a-3.bin ex/a-3.txt ex/b-3.bin

S 1s ex/["acd]-[0-9].b*in

ex/b-1.bin ex/b-2.bin ex/b-3.bin

$ lS "eX/*"

ex/b-1.txt

ex/b-3.txt

ls: cannot access 'ex/*': No such file or

directory

1.
1.
2.
2.
3.
-3.
1.
1.
2.
2.
3.

S ©O ©O O T QO O O QO QO 9O
I

User Commands

cp - copy files and directories

SYNOPSIS

cp [OPTION]... [BMI] SOURCE DEST
cp [OPTION]... SOURCE... DIRECTORY
cp [OPTION]... B DIRECTORY SOURCE...

DESCRIPTION
Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

Which command copies all Java source files (those whose names end
in . java) from the directory a/b to the directory /tmp?

A.S cp a/b/[a-z].java /tmp D.S$ cp a/b/?.java /tmp

B. $ cp a/*/*.java /tmp E.S$ cp a/b /tmp *.java

C.S$ cp a/b/*.java /tmp

Typical Unix tool behavior

S program
> reads from stdin, writes to stdout

S program filel file2 file3
> runs ‘program’ on the 3 files, write to stdout

S program —
> For programs that require filenames, might read from stdin

Standard input/output/error

Every running program has (by default) 3 open "files" referred to by their file
descriptor number

Input comes from stdin (file descriptor 0)
> input () # Python: Read a line
» System.in.read(var) // Java: Read bytes and store in var array
» $§ IFS= read var # Read a line and store in var variable

Standard input/output/error

Standard input/output/error

Normal output goes to stdout (file descriptor 1)
> print(var) # Python
» System.out.println(var) // Java
» §$ echo "S${var}" # Bash

10

Standard input/output/error

Normal output goes to stdout (file descriptor 1)
> print(var) # Python
» System.out.println(var) // Java
» §$ echo "S${var}" # Bash

Error messages traditionally go to stderr (file descriptor 2)
» print(var, file=sys.stderr) # Python
> System.err.println(var) // Java
» S$ echo "S{var}" >&2 # Bash

10

Redirection

Redirection

>file — redirect standard output (stdout) to £ile with truncation

11

Redirection

>file — redirect standard output (stdout) to £ile with truncation

>>file — redirect stdoutto file, but append

11

Redirection

>file — redirect standard output (stdout) to £ile with truncation
>>file — redirect stdoutto file, but append

<file — redirect input (stdin) to come from file

11

Redirection

>file — redirect standard output (stdout) to £ile with truncation
>>file — redirect stdoutto file, but append
<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right

11

Redirection

>file — redirect standard output (stdout) to £ile with truncation
>>file — redirect stdoutto file, but append
<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right
> $ Is|wc

11

Redirection

>file — redirect standard output (stdout) to £ile with truncation
>>file — redirect stdoutto file, but append
<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right
> $ Is|wc

2>file — redirect standard error (stderr) to £ile with truncation

11

Redirection

>file — redirect standard output (stdout) to £ile with truncation
>>file — redirect stdoutto file, but append
<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right
> $ Is|wc

2>file — redirect standard error (stderr) to £ile with truncation

2>&1 — redirect stderr to stdout

11

Redirection examples

Redirection examples

S echo '"Hi!' >output.txt

Redirection examples

S echo '"Hi!' >output.txt
S cat <input.txt

Redirection examples

S echo '"Hi!' >output.txt
S cat <input.txt
S sort <input.txt >output.txt

12

Redirection examples

S echo 'Hi!' >output.txt

S cat <input.txt

S sort <input.txt >output.txt
S ps -ax | grep bash

12

Redirection examples

S echo 'Hi!' >output.txt

S cat <input.txt

S sort <input.txt >output.txt

S ps -ax | grep bash

S grep hello file | sort | uniqg -c

12

Redirection examples

v U U\ U\ U W\»n»

echo 'Hi!' >output.txt

cat <input.txt

sort <input.txt >output.txt

ps -ax | grep bash

grep hello file | sort | uniq -c

echo Hello | cut -c 1-4 >>result.txt

12

Redirection examples

vy Un U W\»n U\ W\ W\n

echo 'Hi!' >output.txt

cat <input.txt

sort <input.txt >output.txt

ps -ax | grep bash

grep hello file | sort | uniq -c
echo Hello | cut -c 1-4 >>result.txt

./process <input | tail -n 4 >output

12

(Almost) everything is a file

Files on the file system

Network sockets (for communicating with remote computers, e.g., web browsers,
ssh, mail clients etc.)

Terminal 1/0

A bunch of special files
> /dev/null — Writes are ignored, reads return end-of-file (EOF)

> /dev/zero — Writes are ignored, reads return arbitrarily many O bytes
» /dev/urandom — Reads return arbitrarily many (pseudo) random bytes

13

Given that /dev/null ignores all data written to it, how can we run the

program . /foo and redirect stderr so no error messages appear in our
terminal?

A.S ./foo >/dev/null
./foo 1>/dev/null

./foo 2>/dev/null

./foo | /dev/null

./foo &2>/dev/null

Some programs read all of their input before terminating. How can we run
a program ./foo such that it has no input at all?

A.S ./foo </dev/null
./foo </dev/zero

./foo </dev/urandom

./foo </dev/eof

echo | ./foo

In-class exercise

https:.//checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-03.html

Grab a laptop and a partner and try to get as much of that done as you can!

10

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-03.html

