
CS 241: Systems Programming

Lecture 3. More Shell
Spring 2020

Prof. Stephen Checkoway

1

Anatomy of a single command

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

• Options can take arguments: -o file.txt or --output=file.txt

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

• Options can take arguments: -o file.txt or --output=file.txt

‣ ⟨arguments⟩ are the things the command acts on

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

• Options can take arguments: -o file.txt or --output=file.txt

‣ ⟨arguments⟩ are the things the command acts on

• Often file paths or server names or URLs

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

• Options can take arguments: -o file.txt or --output=file.txt

‣ ⟨arguments⟩ are the things the command acts on

• Often file paths or server names or URLs

• When no arguments are given (or a single -), many commands read stdin

2

Anatomy of a single command

⟨command⟩ ⟨options⟩ ⟨arguments⟩

‣ ⟨command⟩ is the name of a command or a path to a program

‣ ⟨options⟩ are directives to the command to control its behavior

• Short options are a hyphen and a letter: -h

• Long options are (usually) two hyphens and multiple letters: --help

• Multiple short options can be combined -a -b -c is the same as -abc

• Options can take arguments: -o file.txt or --output=file.txt

‣ ⟨arguments⟩ are the things the command acts on

• Often file paths or server names or URLs

• When no arguments are given (or a single -), many commands read stdin

Example: tar -zcf archive.tar.gz --verbose dir/file1 file2

2

Example meaning

3

Click to go to explainshell.com

https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2
https://explainshell.com/explain?cmd=tar+-zcf+archive.tar.gz+--verbose+dir/file1+file2

Shell commands

4

Shell commands

Shell builtins

‣ Functionality built into bash (all listed in the manual)

‣ E.g., cd, alias, echo, pwd

4

Shell commands

Shell builtins

‣ Functionality built into bash (all listed in the manual)

‣ E.g., cd, alias, echo, pwd

Shell functions

‣ User-defined functions (we'll get to these later)

4

Shell commands

Shell builtins

‣ Functionality built into bash (all listed in the manual)

‣ E.g., cd, alias, echo, pwd

Shell functions

‣ User-defined functions (we'll get to these later)

Aliases

‣ E.g., alias ls='ls --color=auto'

4

Shell commands

Shell builtins

‣ Functionality built into bash (all listed in the manual)

‣ E.g., cd, alias, echo, pwd

Shell functions

‣ User-defined functions (we'll get to these later)

Aliases

‣ E.g., alias ls='ls --color=auto'

Programs stored on the file system

‣ /bin, /usr/bin, /usr/local/bin, /sbin, /usr/sbin

‣ E.g., ssh, cat, ls, rm

4

Pathname expansion/globbing

Bash performs pathname expansion via pattern matching (a.k.a. globbing)
on each unquoted word containing a wild card

Wild cards: *, ?, [

‣ * matches zero or more characters

‣ ? matches any one character

‣ […] matches any single character between the brackets, e.g., [abc]

‣ [!…] or [^…] matches any character not between the brackets

‣ [x-y] matches any character in the range, e.g., [a-f]

5

Example

6

Example

$ ls ex/*.txt

6

Example

$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

6

Example

$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*

6

Example

$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*
ex/a-3.bin ex/a-3.txt ex/b-3.bin ex/b-3.txt

6

Example

$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*
ex/a-3.bin ex/a-3.txt ex/b-3.bin ex/b-3.txt

$ ls ex/[^acd]-[0-9].b*in

6

Example

$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*
ex/a-3.bin ex/a-3.txt ex/b-3.bin ex/b-3.txt

$ ls ex/[^acd]-[0-9].b*in
ex/b-1.bin ex/b-2.bin ex/b-3.bin

6

Example

$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*
ex/a-3.bin ex/a-3.txt ex/b-3.bin ex/b-3.txt

$ ls ex/[^acd]-[0-9].b*in
ex/b-1.bin ex/b-2.bin ex/b-3.bin

$ ls "ex/*"

6

Example

$ ls ex/*.txt
ex/a-1.txt ex/a-2.txt ex/a-3.txt ex/b-1.txt
ex/b-2.txt ex/b-3.txt

$ ls ex/?-3.*
ex/a-3.bin ex/a-3.txt ex/b-3.bin ex/b-3.txt

$ ls ex/[^acd]-[0-9].b*in
ex/b-1.bin ex/b-2.bin ex/b-3.bin

$ ls "ex/*"
ls: cannot access 'ex/*': No such file or
directory

6

Which command copies all Java source files (those whose names end
in .java) from the directory a/b to the directory /tmp?

7

A. $ cp a/b/[a-z].java /tmp

B. $ cp a/*/*.java /tmp

C. $ cp a/b/*.java /tmp

D. $ cp a/b/?.java /tmp

E. $ cp a/b /tmp *.java

Typical Unix tool behavior

$ program

‣ reads from stdin, writes to stdout

$ program file1 file2 file3

‣ runs ‘program’ on the 3 files, write to stdout

$ program –

‣ For programs that require filenames, might read from stdin

8

Standard input/output/error

Every running program has (by default) 3 open "files" referred to by their file
descriptor number

Input comes from stdin (file descriptor 0)

‣ input() # Python: Read a line

‣ System.in.read(var) // Java: Read bytes and store in var array

‣ $ IFS= read -r var # Read a line and store in var variable

9

Standard input/output/error

10

Standard input/output/error

Normal output goes to stdout (file descriptor 1)

‣ print(var) # Python

‣ System.out.println(var) // Java

‣ $ echo "${var}" # Bash

10

Standard input/output/error

Normal output goes to stdout (file descriptor 1)

‣ print(var) # Python

‣ System.out.println(var) // Java

‣ $ echo "${var}" # Bash

Error messages traditionally go to stderr (file descriptor 2)

‣ print(var, file=sys.stderr) # Python

‣ System.err.println(var) // Java

‣ $ echo "${var}" >&2 # Bash

10

Redirection

11

Redirection

>file — redirect standard output (stdout) to file with truncation

11

Redirection

>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

11

Redirection

>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

<file — redirect input (stdin) to come from file

11

Redirection

>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right

11

Redirection

>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right

‣ $ ls | wc

11

Redirection

>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right

‣ $ ls | wc

2>file — redirect standard error (stderr) to file with truncation

11

Redirection

>file — redirect standard output (stdout) to file with truncation

>>file — redirect stdout to file, but append

<file — redirect input (stdin) to come from file

| — connect stdout from left to stdin on right

‣ $ ls | wc

2>file — redirect standard error (stderr) to file with truncation

2>&1 — redirect stderr to stdout

11

Redirection examples

12

Redirection examples

$ echo 'Hi!' >output.txt

12

Redirection examples

$ echo 'Hi!' >output.txt

$ cat <input.txt

12

Redirection examples

$ echo 'Hi!' >output.txt

$ cat <input.txt

$ sort <input.txt >output.txt

12

Redirection examples

$ echo 'Hi!' >output.txt

$ cat <input.txt

$ sort <input.txt >output.txt

$ ps -ax | grep bash

12

Redirection examples

$ echo 'Hi!' >output.txt

$ cat <input.txt

$ sort <input.txt >output.txt

$ ps -ax | grep bash

$ grep hello file | sort | uniq -c

12

Redirection examples

$ echo 'Hi!' >output.txt

$ cat <input.txt

$ sort <input.txt >output.txt

$ ps -ax | grep bash

$ grep hello file | sort | uniq -c

$ echo Hello | cut -c 1-4 >>result.txt

12

Redirection examples

$ echo 'Hi!' >output.txt

$ cat <input.txt

$ sort <input.txt >output.txt

$ ps -ax | grep bash

$ grep hello file | sort | uniq -c

$ echo Hello | cut -c 1-4 >>result.txt

$./process <input | tail -n 4 >output

12

(Almost) everything is a file

Files on the file system

Network sockets (for communicating with remote computers, e.g., web browsers,
ssh, mail clients etc.)

Terminal I/O

A bunch of special files

‣ /dev/null — Writes are ignored, reads return end-of-file (EOF)

‣ /dev/zero — Writes are ignored, reads return arbitrarily many 0 bytes

‣ /dev/urandom	— Reads return arbitrarily many (pseudo) random bytes

13

A. $./foo >/dev/null

B. $./foo 1>/dev/null

C. $./foo 2>/dev/null

D. $./foo | /dev/null

E. $./foo &2>/dev/null

14

Given that /dev/null ignores all data written to it, how can we run the

program ./foo and redirect stderr so no error messages appear in our
terminal?

A. $./foo </dev/null

B. $./foo </dev/zero

C. $./foo </dev/urandom

D. $./foo </dev/eof

E. $ echo | ./foo

15

Some programs read all of their input before terminating. How can we run
a program ./foo such that it has no input at all?

In-class exercise

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-03.html

Grab a laptop and a partner and try to get as much of that done as you can!

16

https://checkoway.net/teaching/cs241/2020-spring/exercises/Lecture-03.html

