
CS 241: Systems Programming

Lecture 34. Advanced Git
Fall 2019

Prof. Stephen Checkoway

1

Using "branches"

Development and release versions

Trying out new features

Focusing on fixing a bug

Simpler to do in Git than other VCS, consider using more frequently

2

Branches

Visualize a project’s development as a “linked list” of commits.

When a development track splits, a new branch is created.

In Git, branches are actually just a pointer to these commits

3

Git branching

List all branches in the project

‣ git branch

Create a new branch

‣ git branch <branchname>

Switch to a branch

‣ git checkout <branchname>

Create and immediately switch

‣ git checkout –b <branchname>

Delete a branch

‣ git branch –d <branchname>

4

Using branches

Create and switch to a branch

5

$ git branch working

$ git checkout working
M README
Switched to branch 'working'

$ git branch
 master
* working

Stashing

Working tree should be clean when switching branches

Save/hide changes you don't want to commit with git stash

‣ Pushes changes onto a stash stack

Recover changes lager with git stash pop

6

Using branches

7

Using branches

Integrate changes back into master

8

$ git checkout master
Switched to branch 'master'

$ git merge working
Merge made by the 'recursive' strategy.
 newfile.txt | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 newfile.txt

Before git merge

9

After git merge

10

Merged history

11

* cdd07b2 - (HEAD, master) Merge branch
'working'
|\
| * 1ccf9e7 - (working) Added a new file
* | 3637a76 - Second change
* | cf98d00 - First change
|/
* cf31a23 - Updated README to 2.0
* 2a8fc15 - Initial commit

Rebasing

Like merging, rebasing transfers changes from one branch to another

Does not create a new commit

Replays changes from current branch onto head of other branch

12

Before git rebase

13

After git rebase

14

’ ’ ’

git rebase

Powerful tool

Can change the commit order

Merge/split commits

Make fixes in earlier commits

‣ DO NOT DO ON PUSHED CHANGES OR PUBLIC BRANCH

15

$ git rebase –i master

Conflicts

16

Git conflict markers

17

$ cat foo.c
<<<<<<< HEAD
current content
=======
branch content
>>>>>>> newbranch
$ vim foo.c
$ git add foo.c
$ git rebase --continue

Pull requests with Github

Contributing changes to repositories on Github

Requests the owner of the code integrate your changes

18

Setup

GitHub

19

Setup

upstream  

(theirs)

20

Setup

upstream  

(theirs)
fork

21

Setup

upstream  

(theirs)
origin  

(yours)
fork

22

Setup

upstream  

(theirs)
origin  

(yours)

c
lo

n
e

fork

23

Setup

upstream  

(theirs)
origin  

(yours)

local 
(yours)

c
lo

n
e

fork

24

Setup

upstream  

(theirs)
origin  

(yours)

local 
(yours)

upstreamc
lo

n
e

fork

25

Setup

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstream

26

Contribute Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstream

27

Contribute Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreampush

28

Contribute Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreampush

29

Contribute Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreampush

pull
request

30

Contribute Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreampush

pull
request

31

Integrate Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstream

32

Integrate Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreamfe
tc

h

33

Integrate Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreamfe
tc

h

34

Integrate Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreampush
fe

tc
h

35

Integrate Changes

upstream  

(theirs)
origin  

(yours)

local 
(yours)

origin
 upstreampush
fe

tc
h

36

You want to contribute code to the Github project fancy/project (fancy
is the name of the owner, project is the name of the repo). You fork the
repo (producing student/project), commit your changes, and push to
student/project. Next, you make a pull request for fancy/project.

Which statement is true?

A. Your code is now integrated into fancy/project via merging

B. Your code is now integrated into fancy/project via rebasing

C. You have requested that your code be integrated into fancy/project,
but no changes have been made

D. You cannot make any additional commits until the pull request has been
accepted

37

origin upstream

local

master master

master

Branches

38

origin upstream

local

master master

master

$ git checkout -b feature

feature

39

origin upstream

local

master master

master

$ git commit

feature

40

origin upstream

local

master master

master

$ git push -u origin feature

feature

feature

41

origin upstream

local

master master

master

feature

feature

pull request

42

origin upstream

local

master master

master

Great idea, now can you do it more like this?

feature

feature

pull request

43

origin upstream

local

master master

master

$ git commit

$ git push

feature

feature

pull request

44

origin upstream

local

master

master

master

Awesome, but please update with new changes in master

feature

feature

pull request

45

origin upstream

local

master

master

master

$ git remote add upstream https://github.com/…

$ git fetch upstream master:master

feature

feature

pull request

46

origin upstream

local

master

master

master

$ git rebase master

feature

feature

pull request

WARNING:  
You may have 

to resolve conflicts.

47

origin upstream

local

master

master

master

$ git rebase master

feature

feature

pull request

48

origin upstream

local

master

master

$ git push -f origin master feature

feature

pull request

master

feature

49

origin upstream

local

master

master

feature

pull request

master

feature

Great. Please squash your commits.

50

origin upstream

local

master

master

$ git rebase –i master

feature

pull request

master

feature

51

origin upstream

local

master

master

$ git rebase –i master

feature

pull request

master

feature

52

origin upstream

local

master

master

$ git rebase –i master

feature

pull request

master

feature

53

origin upstream

local

master

master

$ git push -f origin feature

feature

pull request

master

feature

54

origin upstream

local

master

master

feature

pull request

master

feature

Perfect, I accept!

55

origin upstream

local

master

master

Time to Clean Up

feature

master

feature

56

origin upstream

local

master

master

I accept!

feature

master

feature

$ git fetch upstream master:master

57

origin upstream

local

master

master

I accept!

feature

master feature

$ git push origin master

58

origin upstream

local

master

master

I accept!

master feature

$ git checkout master  
$ git branch -d feature

59

origin upstream

local

master

master

I accept!

master

$ git push origin -d feature

60

After a PR is accepted, Github will ask you if you want to delete your feature
branch. If you say yes, which branches get deleted?

A. feature — the branch named feature in your local repo

B. origin/feature — the branch named feature in your remote repo

C. upstream/feature — the branch named feature in their remote repo

D. feature and origin/feature

E. feature, origin/feature, and upstream/feature

61

Now that origin/feature has been deleted, how do you delete
feature?

A. $ git delete feature

B. $ git delete -b feature

C. $ git branch -d feature

D. $ git push origin -d feature

E. I would google "delete a git branch" and then click on https://
stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-
locally-and-remotely like every other programmer

62

https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely
https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely
https://stackoverflow.com/questions/2003505/how-do-i-delete-a-git-branch-locally-and-remotely

In-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-34.html

Grab a laptop and a partner and try to get as much of that done as you can!

63

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-34.html

