
CS 241: Systems Programming

Lecture 28. Signals
Fall 2019

Prof. Stephen Checkoway

1

Which of the following is the standard procedure to run a new program cmd
with argument arg (error checking has been omitted below)?

A. pid_t pid = fork();  
if (pid == 0) execl(path, path, arg, (char *)0);

B. pid_t pid = fork();  
if (pid != 0) execl(path, path, arg, (char *)0);

C. int ret = execl(path, path, arg, (char *)0);  
if (ret == 0) fork();

D. int ret = execl(path, path, arg, (char *)0);  
if (ret != 0) fork();

2

Redirection

From last class's exercises, the dup2 system call creates a new file
descriptor that refers to the same file as the old descriptor

int dup2(int oldfd, int newfd);

We can use this to perform redirection of stdin/stdout/stderr

1. Open the file we want to redirect input from/output to

2. dup2 the returned file descriptor to STDIN_FILENO/STDOUT_FILENO/
STDERR_FILENO

3. Close the original file descriptor

3

Strace example

When running  

$ /bin/echo hello > output.txt  
we can see the sequence of system calls Bash makes using strace -f

‣ On Linux, fork() uses the clone system call

4

8038 clone(...) = 8039
8039 openat(AT_FDCWD, "output.txt", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 3
8039 dup2(3, 1) = 1
8039 close(3) = 0
8039 execve("/bin/echo", ["/bin/echo", "hello"], ...) = 0

What about pipes?

$ /bin/echo hi | /usr/bin/head

We can strace this!

5

6

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0

12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

Pipes

Oldest form of UNIX System interprocess communication (IPC)

Have some limitations:

‣ Historically have been half-duplex (data only flows one direction)

• Data only flows one direction

• Some systems have full-duplex, but this isn't standard

‣ Only can be used between processes with a common ancestor

7

pipe(2)

#include <unistd.h>

int pipe(int fd[2])

‣ Returns 0 on success, -1 on error

Returns values in array fd

‣ fd[0] is opened for reading

‣ fd[1] is opened for writing

File descriptors are connected to each other!

8

After call to pipe()

9From Advanced Programming in the UNIX® Environment, Third Edition, by W. Richard Stevens and Stephen A. Rago (ISBN-13: 978-0-321-63773-4).
Copyright © 2013 by Pearson Education, Inc. All rights reserved.

Ok…

A pipe in a single process is usually unnecessary

‣ We can already talk to ourselves!

Normally, you create a pipe and then fork()

This creates a channel from parent to child (or vice versa)

10

After call to fork()

11From Advanced Programming in the UNIX® Environment, Third Edition, by W. Richard Stevens and Stephen A. Rago (ISBN-13: 978-0-321-63773-4).
Copyright © 2013 by Pearson Education, Inc. All rights reserved.

Close unneeded descriptors

12From Advanced Programming in the UNIX® Environment, Third Edition, by W. Richard Stevens and Stephen A. Rago (ISBN-13: 978-0-321-63773-4).
Copyright © 2013 by Pearson Education, Inc. All rights reserved.

13

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd strace'

0 terminal

1 terminal

2 terminal

3

4

The primes (' or '') denote forked children that haven't execed

14

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash

0 terminal

1 terminal

2 terminal

3

4

The primes (' or '') denote forked children that haven't execed

15

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash

0 terminal

1 terminal

2 terminal

3 pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

16

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash'

0 terminal terminal

1 terminal terminal

2 terminal terminal

3 pipe_read pipe_read

4 pipe_write pipe_write

The primes (' or '') denote forked children that haven't execed

17

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash'

0 terminal terminal

1 terminal terminal

2 terminal terminal

3 pipe_read pipe_read

4 pipe_write pipe_write

The primes (' or '') denote forked children that haven't execed

18

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal terminal

1 terminal terminal terminal

2 terminal terminal terminal

3 pipe_read pipe_read pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

19

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal terminal

1 terminal terminal terminal

2 terminal terminal terminal

3 pipe_read pipe_read pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

20

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal terminal

1 terminal terminal terminal

2 terminal terminal terminal

3 pipe_read pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

21

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal terminal

1 terminal terminal terminal

2 terminal terminal terminal

3 pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

22

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal terminal

1 terminal pipe_write terminal

2 terminal terminal terminal

3 pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

23

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal pipe_read

1 terminal pipe_write terminal

2 terminal terminal terminal

3 pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

24

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal pipe_read

1 terminal pipe_write terminal

2 terminal terminal terminal

3 pipe_read

4 pipe_write

The primes (' or '') denote forked children that haven't execed

25

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' bash''

0 terminal terminal pipe_read

1 terminal pipe_write terminal

2 terminal terminal terminal

3

4 pipe_write

The primes (' or '') denote forked children that haven't execed

26

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash bash' head

0 terminal terminal pipe_read

1 terminal pipe_write terminal

2 terminal terminal terminal

3

4

The primes (' or '') denote forked children that haven't execed

27

12449 execve("/bin/bash", ["bash", "-c", "/bin/echo hi | /usr/bin/head"], ...) = 0
12449 pipe([3, 4]) = 0
12449 clone(...) = 12450
12449 close(4) = 0
12449 clone(...) = 12451
12449 close(3) = 0
12450 close(3) = 0
12449 wait4(-1, <unfinished ...>
12450 dup2(4, 1) = 1
12451 dup2(3, 0) = 0
12451 close(3) = 0
12450 close(4) = 0
12451 execve("/usr/bin/head", ["/usr/bin/head"], ...) = 0
12450 execve("/bin/echo", ["/bin/echo", "hi"], ...) = 0
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12450
12449 wait4(-1, <unfinished ...>
12449 <... wait4 resumed> [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 12451

12449 — bash

12450 — echo

12451 — head

fd bash echo head

0 terminal terminal pipe_read

1 terminal pipe_write terminal

2 terminal terminal terminal

3

4

The primes (' or '') denote forked children that haven't execed

When creating two children with a pipe (e.g., $ cmd1 | cmd2), the pipe is
created by the parent process before the first fork and ultimately closes both
ends of the pipe. Why doesn't one the children create the pipe?

A. File descriptors are inherited by children so bash creates the pipe before
either child so the children can communicate via the file descriptors

B. The pipes are reused so that running a second pipeline like 

$ cmd3 | cmd4 doesn't require creating a new pipe. This wouldn't work
if the children created the pipe

C. It doesn't matter which of the three processes (bash and the two
children) creates the pipe because prior to the exec()s, all three are
copies of the same program (bash) so creating the pipe in any one
creates them in all three. Bash just happens to do it in the parent.

28

Signals

Signals are how the kernel communicates with user processes

When the kernel wants to signal the process, it checks the processes signal
mask to see if the process is willing to accept receipt of the signal

If it is willing, then the action depends on the disposition of the signal

‣ If the process is ignoring the signal, it's dropped

‣ If the process has installed a signal handler, the handler is run

‣ If the process has done neither, then the default action is performed

• either the signal is ignored by default; or

• the process is terminated (or a small handful of other things)

If the signal is masked, then the signal remains pending until it is unmasked

29

Signal delivery

Signal delivery is deferred until the kernel next returns to the process

‣ At the completion of a system call

‣ The next time the process is scheduled to run

Some system calls can be interrupted, others cannot

‣ System calls like read(2) and write(2) can read/write less than requested
when interrupted by a signal; return value reflects this

‣ Other calls may return -1 and set errno to EINTR to indicate it was
interrupted

Only one of each (standard) signal may be pending at a time

30

Common signals: signal(7)

SIGINT 		 — Interrupt from keyboard (ctrl-C on the terminal)

SIGQUIT	 — Quit from keyboard (ctrl-\ on the terminal)

SIGILL	 	 — Illegal instruction

SIGABRT	 — Signal from abort() (or assert() which calls abort())

SIGFPE	 	 — Floating point exception; integer divide by 0 on some systems

SIGKILL	 — Kill signal, cannot be handled or ignored

SIGSEGV	 — Segmentation fault

SIGPIPE	 — Write to pipe with no readers

SIGTERM	 — Termination signal

SIGCHLD	 — Child stopped or terminated

SIGSTOP	 — Suspend the process (ctrl-Z on the terminal)

SIGCONT	 — Resume the process (fg or bg on terminal)

SIGWINCH	 — Terminal window resized

31

Similar sounding signals

SIGINT 		 — Interrupt from keyboard (ctrl-C on the terminal)

SIGQUIT	 — Quit from keyboard (ctrl-\ on the terminal)

SIGKILL	 — Kill signal, cannot be handled or ignored

SIGTERM	 — Termination signal

SIGSTOP	 — Suspend the process (ctrl-Z on the terminal)

SIGINT and SIGQUIT should only come from the user typing at the terminal

If one process wants to stop another, it should (typically) request the process
terminate via SIGTERM and, if after a few seconds it hasn't, use SIGKILL

SIGSTOP is about job control, not about terminating processes

32

A. The handler never runs

B. The handler runs the first time ctrl-c is pressed

C. The handler runs both times ctrl-c is pressed

D. The handler runs once after the signal is unmasked

E. The handler runs twice after the signal is unmasked
33

Consider the following sequence of events

‣ The process installs a signal handler for SIGINT

‣ The process masks (blocks) SIGINT

‣ The user presses ctrl-c twice

‣ The process unmasks (unblocks) SIGINT

Which of the following is correct?

Sending a signal

From the shell: kill(1) or killall(1)

‣ $ kill -9 1234 # Send SIGKILL (signal 9) to PID 1234

‣ $ kill -l # List all of the signals

int kill(pid_t pid, int sig);

‣ Sends signal sig to process pid

‣ Different behavior depending on pid < 0, pid = 0, pid > 0, sig = 0, sig > 0

int raise(int sig);

‣ Sends signal sig to the own process

34

Ignoring a signal/setting default

typedef void (*sighandler_t)(int);  
sighandler_t signal(int signum, sighandler_t handler);

‣ Use SIG_IGN for handler to ignore the signal

‣ Use SIG_DFL for handler to use the default behavior

‣ You can also pass a function (pointer) of type void handler(int)
but this isn't portable

35

Setting a handler portably

Use sigaction(2)

‣ Takes a const pointer to a struct that holds a new handler and flags

‣ Takes a pointer to a struct that holds the old handler and flags

‣ flags specify the behavior of interrupted system calls, what information
is given to the signal handler, and whether the same signal can be
received while its handler is running

‣ Read the man page!

36

Masking signals

Signal masks can be manipulated with sigprocmask(2)

37

Handling a signal

To handle a signal and then continue running,

‣ The signal handler should be installed with sigaction(2)

To handle a fatal signal and then exit as a result,

‣ The signal handler should be installed with sigaction(2)

‣ After performing any cleanup actions, the signal disposition should be
reset to the default and the signal reraised 

int handler(int sig) {  
 // Clean up actions, beware of signal handler limitations 
 signal(sig, SIG_DFL);  
 raise(sig);  
}

38

In-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-28.html

Grab a laptop and a partner and try to get as much of that done as you can!

39

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-28.html

