
CS 241: Systems Programming

Lecture 26. System Calls I
Fall 2019

Prof. Stephen Checkoway

1

What is an operating system?

Operating system tasks

Managing the resources of a computer

‣ hardware, network, etc.

Coordinate the running of all other programs

OS can be considered as a set of programs

‣ kernel – name given to the core OS program

3

https://en.wikipedia.org

User mode

Kernel mode

Hardware

Applications

request the kernel

perform an action

on their behalf

using system calls

Do we need an operating system?

A. Yes

B. No

C. I don't know/I'm not sure

5

System calls

Programs talk to the OS via system calls

‣ Set of functions to request access to resources of the machine

‣ System calls vary by operating system and computer architecture

Types of system calls

‣ Input/output (may be network or file I/O)

‣ File system manipulation (e.g., creating/deleting files/directories)

‣ Process control (e.g., process creation/termination)

‣ Resource allocation (e.g., memory)

‣ Device management (e.g., talking to USB devices)

‣ Communication (e.g., pipes and sockets)

‣ …

6

Most basic UNIX system call: exit

Programs (normally) end by returning from main() or calling exit(3)

In addition to calling the atexit handlers, the OS needs to be notified that

the program should stop running via the exit system call

The exit system call takes an exit status as its only parameter

When the kernel receives an exit system call, it cleans up all of the resources

associated with the process and notifies the parent process that a child has

exited

7

System calls as API

System calls are an example of an application programming interface (API)

‣ Each system call is assigned a small integer (the system call number)

‣ System calls are performed by setting up the arguments (often in

registers) and using a dedicated "system call" or "interrupt" instruction

‣ The kernel's system call handler calls an appropriate function based on

the system call number

‣ Data (and success/failure) is returned to the application

8

http://www.linux.it/~rubini/docs/ksys/

System calls and libc

C standard library

‣ Some functions make no system calls (e.g., strcpy(3))

‣ Some functions "wrap" a single system call (e.g., open(2))

‣ Some functions have complex behavior and might make a variable

number of system calls (e.g., malloc(3))

We're going to focus on the libc wrappers for the system calls

‣ These live in section 2 of the manual: open(2), _exit(2), fork(2)

10

Why do we use system calls instead of making a function call directly to the

function in the kernel that will handle our system call request?

Discuss with your group and select A on your clickers when you have a

reason (or multiple reasons)

11

Open a file: open(2)

#include <fcntl.h>

int open(char const *path, int oflag, ...);

‣ O_RDONLY	 	 open for reading only

‣ O_WRONLY	 	 open for writing only

‣ O_RDWR	 	 	 open for reading and writing

‣ O_APPEND	 	 append on each write

‣ O_TRUNC	 	 truncate size to 0

‣ O_CREAT	 	 create file if it does not exist

‣ O_EXCL		 	 error if O_CREAT and the file exists

‣ O_NONBLOCK	 do not block on open or for data to become available

Last arg is the "int mode" -- see chmod(2) and umask(2)

Returns file descriptor on success, -1 on error
12

File descriptors

Integer index into OS file table for this process

3 are automatically created for you

‣ STDIN_FILENO		 0	 standard input

‣ STDOUT_FILENO	 1	 standard output

‣ STDERR_FILENO	 2	 standard error

These are what are used in shell redirection

‣ $./a.out 2> errors.txt

13

Read data: read(2)

#include <unistd.h>

ssize_t read(int fildes, void *buf, size_t nbyte);

‣ Attempts to read nbytes from filedes storing data in buf

‣ Returns the number of bytes read

‣ Upon EOF, returns 0

‣ Upon error, returns -1 and sets errno

14

Write data: write(2)

#include <unistd.h>

ssize_t write(int fildes, void const *buf, size_t nbyte);

‣ Attempts to write nbyte of data to the object referred to by filedes from

the buffer buf

‣ Upon success, returns number of bytes are written

‣ On error, returns -1 and sets errno

15

Seek in file: lseek(2)

#include <sys/types.h>  
#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

‣ Like fseeko(3) but for file descriptors, not streams

‣ whence is one of SEEK_SET, SEEK_CUR, SEEK_END

‣ On success, returns the resultant offset in terms of bytes from the

beginning of the file

‣ On error, returns (off_t)-1 and sets errno

16

Close files: close(2)

#include <unistd.h>

int close(int fildes);

‣ Closes fildes, returns 0 on success

‣ Returns -1 and sets errno on error

17

Delete files: unlink(2)

#include <unistd.h>

int unlink(char const *path);

‣ Removes path, returns 0 on success

‣ Returns -1 and sets errno on error

18

Rename files: rename(2)

#include <stdio.h>

int rename(char const *oldpath, char const *newpath);

‣ Renames oldpath to newpath, returns 0 on success

‣ Returns -1 and sets errno on error

‣ This can change directories, but not file systems!

19

File descriptor <-> stream

#include <stdio.h>

FILE *fdopen(int fildes, const char *mode);

‣ Opens a file descriptor as a stream

‣ When you fclose(), descriptor is closed

int fileno(FILE *stream);

‣ Returns file descriptor associated with a stream

It's best not to mix stdio functions with low-level system calls: use one or

the other

20

Which statement is true if we run the following code  

FILE *fp = fopen(path, "r");	 // Open a file 

fgets(buf, size, fp);	 	 	 	 // Read a line  

int fd = fileno(fp);		 	 	 	 // Get the underlying file descriptor  

lseek(fd, 0, SEEK_SET);	 	 	 // Rewind to the beginning of the file 

fgets(buf2, size, fp);		 	 	 // Read a line

A. buf and buf2 have the same contents

B. buf and buf2 have different contents (unless the first two lines are

identical)

C. There's no way to know if they will be the same or different

D. It's an error to mix lseek(2) and fgets(3)

21

Get current directory: getcwd(3)

#include <unistd.h>

char *getcwd(char *buf, size_t size);

‣ Copies absolute path of current working directory to buf

• length of array is "size"

• if path is too long (including null byte), NULL/ERANGE

‣ Linux allows NULL for buf for dynamic allocation, see man page

22

Change directories: chdir(2)

#include <unistd.h>

int chdir(const char *path);  
int fchdir(int fildes);

Change working directory of calling process

‣ How "cd" is implemented

‣ fchdir() is only in certain standards, but widely available

‣ fchdir() lets you return to a directory referenced by a file descriptor

from open(2)ing a directory

0 on success, -1/errno on error

23

Create/delete a directory

#include <sys/stat.h>  

#include <sys/types.h>

int mkdir(char const *path, mode_t mode);

‣ Create a directory called path

‣ Don't forget execute bits in mode!

#include <unistd.h>

int rmdir(char const *path);

‣ Delete the directory specified by path

0 for success, -1/errno on error

24

In-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-26.html

Grab a laptop and a partner and try to get as much of that done as you can!

25

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-26.html

