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Announcement

No reading quiz for Wednesday (since you already did it for today)
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Operators

The same as Java


‣ Arithmetic: +, -, *, /, %


‣ Logical: &&, ||, !


‣ Bitwise: &, |, ^, ~, <<, >>

‣ Pre/post increment, decrement: ++, --


‣ Relational: ==, !=, <, <=, >, >=

‣ Assignment: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

There are some others we'll talk about later


‣ sizeof 


‣ . 


‣ -> 
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C has pre- and post-increment (++) and -decrement (--) operators. What 

does this code print? (%d means print an integer)


int main(void) {  
  int x = 3;  
  int y = 5;  
  printf("%d %d\n", x--, ++y);  
  return 0;  
}

A. 2 5


B. 2 6


C. 3 5


D. 3 6


E. Undefined
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C has pre- and post-increment (++) and -decrement (--) operators. What 

does this code print? (%d means print an integer)


int main(void) {  
  int x = 3;  
  printf("%d\n", x-- + --x);  
  return 0;  
}

A. 3


B. 4


C. 5


D. 6


E. Undefined
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Huge difference from Java

C is full of undefined behavior, implementation-defined behavior, and 

unspecified behavior


Undefined behavior gives the compiler license to do whatever it wants, 

including nothing


Implementation-defined behavior means the compiler gets to choose (and 

document) its behavior


Unspecified behavior means the compiler gets to pick from among several 

choices
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What does the code print?

A. foo  
bar  
1 2 


B. bar  
foo  
1 2 


C. 1 2  
foo  
bar 


D. Undefined 

behavior, 

could print 

anything


E. Unspecified 

behavior, 

either A or B.
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#include <stdio.h>

int foo(void) {
  printf("foo\n");
  return 1;
}

int bar(void) {
  printf("bar\n");
  return 2;
}

int main(void) {
  printf("%d %d\n", foo(), bar());
  return 0;
}



Control flow

if statements; for, while, do-while loops almost identical to Java


zero is false, nonzero is true
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Examples

!9

int signum(int x) {
  if (x < 0)
    return -1;
  if (x > 0)
    return 1;
  return 0;
}

int sum_of_squares(int n) {
  int result = 0;
  for (int i = 1; i < n; ++i)
    result += i * i;
  return result;
}



Examples
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bool get_reponse(void) {
  int response;
  do {
    printf("Enter y or n\n");
    response = getchar();
  } while (response != EOF
           && response != 'y'
           && response != 'n');
  return response == 'y';
}



Compiler options (gcc/clang)

-E     preprocessor only

-S     compile only (no assembly or linking)

-c     compile/assemble (produce .o file)


-o foo   specify output file as foo
-lxxx    use library named libxxx.so or libxxx.a
-g     emit debugging symbols (enables debugging)

-std=c11  use C11 standard

-pedantic be pedantic

-Wall    turn on "all" warnings

-Wextra   turn on extra warnings

-Werror   make warnings into errors
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Compiling code

$ ⟨compiler⟩ ⟨options⟩ ⟨.c files⟩ ⟨libraries⟩

$ clang -Wall -o program -std=c11 *.c -lm

If you omit -o output, the default is a.out


If you omit -std=c11, clang and gcc have different defaults!
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Formatting your code

It's important to be consistent more than anything else


Use tools!


$ clang-format foo.c # Writes formatted code to stdout


$ clang-format -i foo.c # Writes formatted code back to foo.c
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In-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-09.html


Grab a laptop and a partner and try to get as much of that done as you can!
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https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-09.html

