
CS 241: Systems Programming

Lecture 4. Environment and

expansion
Fall 2019

Prof. Stephen Checkoway

!1

Announcement

If you are not a CS major and you would like to be, please declare ASAP

!2

Bash simple command revisited

Recall we said a simple command has the form: 
	 ⟨command⟩ ⟨options⟩ ⟨arguments⟩

The truth is more complicated

‣ ⟨variable assignments⟩ ⟨words and redirections⟩ ⟨control operator⟩

‣ Variables and their assigned values are available to the command

‣ The first word is the command, the rest are arguments*

‣ FOO=blah BAR=okay cmd aaa >out bbb 2>err ccc <in ;

‣ FOO=blah BAR=okay cmd aaa bbb ccc <in >out 2>err

‣ Real example: $ IFS= read -r var

!3

* Bash doesn't distinguish between options and arguments, that's up to each command

Environment variables

A (second) method for passing data to a program

Essentially a key/value store (i.e., a hash map)

‣ $ FOO=blah BAR=okay cmd aaa bbb ccc

‣ cmd has access to the FOO and BAR environment variables plus args

Environment variables are inherited from the parent

‣ Every program started from the shell has access to a copy of the shell's
environment

!4

Bash variables

Setting and using variables in bash

‣ $ place=Earth  
$ echo "Hello ${place}."  
Hello Earth.

By default, variables set in bash aren't inherited by children

‣ $ bash # Start a new shell  
$ echo "Hello ${place}."  
Hello . # ${place} expanded to the empty string

!5

Exporting variables

We can export a variable which causes it to appear in the environment of
children

$ place=World  
$ export place  
$ bash # Starting a new shell  
$ echo "Hello ${place}."  
Hello World.

Equivalently, $ export place=World

!6

Summarizing

$ FOO=bar cmd1  
$ cmd2

‣ FOO available to cmd1 but not cmd2

$ FOO=bar  
$ cmd1  
$ cmd2

‣ FOO not available to either cmd1 or cmd2

$ export FOO=bar  
$ cmd1  
$ cmd2

‣ FOO available to both cmd1 and cmd2
!7

Useful environment variables

EDITOR	 — Used when some commands need to launch an editor (e.g., git)

HOME		 — Your home directory

LANG		 — The language programs should use (this is complicated!)

PAGER	 — A program like less that's used to display pages of text

PATH		 — Colon-separated list of directories to search for commands

PS1	 	 — The shell's prompt

PWD	 	 — The current working directory

SHELL	 — The shell you're using

TERM		 — The terminal type, used to control things like color support

UID	 	 — The real user ID number

USER		 — User name

!8

Adding directories to PATH

If you install software in ~/local/bin, you can modify your PATH to access it

$ export PATH="${HOME}/local/bin:${PATH}"

This adds ~/local/bin to the front of the PATH so it is searched first

$ export PATH="${PATH}:${HOME}/local/bin"

This adds ~/local/bin to the end of the PATH so it is searched last

!9

A. W, X, Y, and Z

B. W, Y, and Z

C. X, Y, and Z

D. Y and Z

E. Z

!10

If bash is started via 

$ W=foo bash  
(so W is in bash's environment) and then following lines are executed,  
$ X=bar  
$ export Y=qux  
$ Z=X command  
which environment variables are available to command?

Bash expansion

Bash first splits lines into words by (unquoted) space or tab characters 

	 $ echo 'quoted string' unquoted string

‣ Word 1: echo

‣ Word 2: 'quoted string'

‣ Word 3: unquoted

‣ Word 4: string

Most words then undergo expansion

‣ The values in variable assignment var=value (but not the names)

‣ The command and arguments

‣ The right side of redirections, e.g., 2>path

!11

Bash expansion

Order of expansion

‣ Brace expansion

‣ In left-to-right order, but at the same time

• Tilde expansion

• Variable expansion

• Arithmetic expansion

• Command expansion

• Process substitution

‣ Word splitting (yes, this happens after the shell split the input into words!)

‣ Pathname expansion

And then each of the results undergoes quote removal

!12

Brace expansion

Unquoted braces { } expand to multiple words

‣ {foo,bar,baz}.txt → foo.txt bar.txt baz.txt

‣ foo{a,b,,c}bar → fooabar foobbar foobar foocbar

‣ '{a,b}' → '{a,b}'

‣ "{a,b}" → "{a,b}"

‣ {1..5} → 1 2 3 4 5

‣ {x..z} → x y z

‣ {1,2}{x..z} → 1x 1y 1z 2x 2y 2z

‣ {a,b{c,d}} → a bc bd

!13

Tilde expansion

Words starting with unquoted tildes expand to home directories

‣ ~ → /usr/users/noquota/faculty/steve

‣ ~steve → /usr/users/noquota/faculty/steve

‣ ~aeck → /usr/users/noquota/faculty/aeck

‣ \~steve → \~steve

‣ '~steve' → '~steve'

!14

Parameter/variable expansion

We can assign variables via var=value (e.g., class='CS 241') the shell
defines others like HOME and PWD

Words containing ${var} or $var are expanded to their value, even in
double quoted strings

‣ ${HOME} → /usr/users/noquota/faculty/steve

‣ x${PWD}y → x/tmpy # the current working directory

‣ x$PWDy → x # no PWDy variable so it expands to the empty string

‣ '${class}' → '${class}'

‣ \${class} → \${class}

‣ "${class}" → "CS 241"

!15

Command substitution

Replaces $(command) with its output (with the trailing newline stripped)

‣ "Hello $(echo "${class}" | cut -c 4-)" → "Hello 241"

These can be nested

You can also use `command` instead, but don't do that, use $(…)

!16

Arithmetic expansion

$((arithmetic expression)) expands to the result, assume x=10

‣ $((3+x*2 % 6)) → 5

‣ \$((3+x*2 % 6)) → # syntax error

‣ '$((3+x*2 % 6))' → '$((3+x*2 % 6))'

‣ "$((3+x*2 % 6))" → "5"

!17

Process substitution

Read the man page for bash if you want, we may come back to it

!18

Word splitting

A misfeature in bash!

The results of  
	 parameter/variable expansion ${…}, 
	 command substitution $(…), and  
	 arithmetic expansion $((…))  
not in double quotes is split into words by splitting on (by default) space,
tab, and newline

You never want word splitting! If you're using a $, put it in double quotes!

!19

Pathname expansion

We saw this previously!

!20

Quote removal

Unquoted ', ", and \ characters are removed in the final step

‣ 'foo bar' → foo bar (one word)

‣ "foo bar" → foo bar (one word)

‣ "${class}" → CS 241 (one word)

‣ "${class} is"' fun' → CS 241 is fun (one word)

!21

Expansion summary

Braces form separate words [{a,b,c}] → [a] [b] [c]

Tildes give you home directories ~ → /home/steve

Variables expand to their values "${class}" → "CS 241"

Commands expand to their output "$(ls *.txt | wc -l)" → "3"

Wildcards expand to matching file names *.txt → a.txt b.txt c.txt

Put literal strings in 'single quotes'

Put strings with variables/commands in "${double} $(quotes)"
!22

A. $ mkdir "${books}"

B. $ mkdir "$(books)"

C. $ mkdir ${books}

D. $ mkdir $(books)

E. $ mkdir $books

!23

If we have set a variable 

books='Good books'  

and we want to create a directory with that name, which command should
we use?

A. before

B. after

C. beforeafter

D. Just a newline

E. Nothing, it's a syntax error

!24

What is printed when I run this?  

 

$ FOO=before  
$ FOO=after echo "${FOO}"

In-class exercise

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-04.html

Grab a laptop and a partner and try to get as much of that done as you can!

!25

https://checkoway.net/teaching/cs241/2019-fall/exercises/Lecture-04.html

